
© Copyright 1994, 1996 National Instruments Corporation.
All rights reserved.

LabWindows®/CVI
User Interface Reference Manual

July 1996 Edition

Part Number 320683C-01

Internet Support

GPIB: gpib.support@natinst.com
DAQ: daq.support@natinst.com
VXI: vxi.support@natinst.com
LabVIEW: lv.support@natinst.com
LabWindows: lw.support@natinst.com
HiQ: hiq.support@natinst.com
Lookout: lookout.support@natinst.com
VISA: visa.support@natinst.com
FTP Site: ftp.natinst.com
Web Address: www.natinst.com

Bulletin Board Support

BBS United States: (512) 794-5422 or (800) 327-3077
BBS United Kingdom: 01635 551422
BBS France: 1 48 65 15 59

FaxBack Support

(512) 418-1111

Telephone Support (U.S.)

Tel: (512) 795-8248
Fax: (512) 794-5678

International Offices

Australia 03 9 879 9422, Austria 0662 45 79 90 0, Belgium 02 757 00 20,
Canada (Ontario) 519 622 9310, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 90 527 2321, France 1 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186,
Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico 95 800 010 0793,
Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886, Spain 91 640 0085,
Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200, U.K. 01635 523545

National Instruments Corporate Headquarters

6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as
evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software
media that do not execute programming instructions if National Instruments receives notice of such defects during
the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted
or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the
outside of the package before any equipment will be accepted for warranty work. National Instruments will pay the
shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments
reserves the right to make changes to subsequent editions of this document without prior notice to holders of this
edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND

SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL

INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS

WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR

CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of
National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause of action accrues. National
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The
warranty provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s
failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s modification
of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of
third parties, or other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or
mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole
or in part, without the prior written consent of National Instruments Corporation.

Trademarks

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE
OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on
the part of the user or application designer. Any use or application of National Instruments products for or
involving medical or clinical treatment must be performed by properly trained and qualified medical personnel, and
all traditional medical safeguards, equipment, and procedures that are appropriate in the particular situation to
prevent serious injury or death should always continue to be used when National Instruments products are being
used. National Instruments products are NOT intended to be a substitute for any form of established process,
procedure, or equipment used to monitor or safeguard human health and safety in medical or clinical treatment.

© National Instruments Corporation v LabWindows/CVI User Interface Reference

Contents

About This Manual .. xix
Organization of This Manual .. xix
Conventions Used in This Manual.. xx
Customer Communication .. xxi

Chapter 1
User Interface Concepts... 1-1

Introduction to the Graphical User Interface .. 1-1
User Interface Events .. 1-2
Controlling Your User Interface Using Callbacks or GetUserEvent 1-2
Source Code Connection... 1-3
Control Modes for Generating Commit Events .. 1-3
Using CodeBuilder to Create Source Code for Your GUI............................ 1-4

Operating a Graphical User Interface ... 1-5
Using Panels.. 1-5
Using Menu Bars... 1-6
Using Controls .. 1-7

Data Types of Controls ... 1-8
Numeric Controls .. 1-8
String Controls .. 1-9
Text Messages... 1-10
Text Box Controls ... 1-10
Command Button Controls ... 1-11
Toggle Button Controls... 1-11
LED Controls .. 1-12
Binary Switch Controls ... 1-12
Ring Controls .. 1-13
List Box Controls .. 1-14
Decorations ... 1-16
Graph Controls .. 1-16

Zooming and Panning on Graphs.. 1-19
Strip Chart Controls .. 1-20
Picture Controls... 1-20
Timer Controls .. 1-21
Canvas Controls .. 1-21

Using Pop-Up Panels .. 1-21
Operating the Message Pop-Up Panel... 1-22
Operating the Generic Message Pop-Up Panel................................. 1-22
Operating the Prompt Pop-Up Panel... 1-22
Operating the Confirm Pop-Up Panel ... 1-23

Contents

LabWindows/CVI User Interface Reference vi © National Instruments Corporation

Operating the File Select Pop-Up Panel.. 1-23
Operating Graph Pop-Up Panels... 1-24

Using Fonts ... 1-25
Metafonts That Use Typefaces Native To Each Platform 1-25
Fonts That Use Typefaces Native To Each Platform........................ 1-25
Metafonts That Use Typefaces Installed by LabWindows/CVI 1-25

Chapter 2
User Interface Editor Reference... 2-1

User Interface Editor Overview .. 2-1
Using the User Interface Editor Popup Menus: .. 2-2
Code Builder Overview... 2-2

User Interface Editor Menus ... 2-3
File Menu .. 2-3

New, Open, Save, and Exit LabWindows/CVI Commands.............. 2-4
Save As and Close Commands ... 2-4
Save Copy As.. 2-4
Save All ... 2-4
Add File to Project .. 2-4
Read Only.. 2-4
Print ... 2-4

Edit Menu.. 2-5
Undo and Redo.. 2-5
Cut and Copy... 2-6
Paste .. 2-6
Delete .. 2-6
Copy Panel and Cut Panel... 2-6
Menu Bars ... 2-7
Panel .. 2-9
Control... 2-11
Tab Order .. 2-14
Set Default Font .. 2-15
Apply Default Font ... 2-15
Control Style ... 2-16

Create Menu .. 2-16
Panel .. 2-16
Menu Bar…... 2-16
Controls ... 2-16

View Menu.. 2-17
Find UIR Objects... ... 2-17
Show/Hide Panels ... 2-19
Preview User Interface Header File .. 2-19

Arrange Menu ... 2-20
Alignment….. 2-20
Align Horizontal Centers .. 2-21
Distribution... .. 2-21

Contents

© National Instruments Corporation vii LabWindows/CVI User Interface Reference

Distribute Vertical Centers.. 2-22
Control ZPlane Order.. 2-22
Center Label .. 2-22
Control Coordinates… .. 2-23

The Code Menu... 2-23
Set Target File…... 2-23
Generate .. 2-24

All Code… .. 2-25
Main Function… ... 2-26
All Callbacks... 2-27
Panel Callback... 2-28
Control Callbacks.. 2-28
Menu Callbacks…... 2-28

View .. 2-28
Preferences .. 2-29

Default Panel Events… and Default Control Events… 2-30
Always Append Code to End.. 2-30

Run Menu.. 2-30
Library Menu .. 2-30
Window Menu... 2-31
Options Menu.. 2-31

Operate Visible Panels .. 2-31
Next Tool .. 2-31
Preferences… .. 2-32

Undo Preferences .. 2-32
Color Preferences .. 2-32
Constant Name Assignment.. 2-32

Assign Missing Constants…... 2-33
Save In Text Format.. 2-33
Load From Text Format….. 2-34

Chapter 3
Programming with the User Interface Library ... 3-1

Developing and Running a Program... 3-1
Creating a Graphical User Interface.. 3-2

If you design your GUI in the User Interface Editor... 3-2
If you design your GUI programmatically.. 3-2
Assigning Constant Names in the User Interface Editor 3-2

Controlling a Graphical User Interface... 3-3
User Interface Events .. 3-4

Using Callback Functions to Respond to User Interface Events 3-5
Using GetUserEvent to Respond to User Interface Events............... 3-8

Programming with Panels ... 3-9
Panel Functions ... 3-9
Role of Child Panels.. 3-11

Contents

LabWindows/CVI User Interface Reference viii © National Instruments Corporation

Processing Panel Events.. 3-11
Panel Attributes... 3-11

Panel Attribute Discussion.. 3-17
Platform Independent Fonts That Are Resident on PCs and UNIX.. 3-20
Platform-Independent Metafonts That Are Resident on PCs and UNIX
... 3-20
Metafonts Supplied by LabWindows/CVI.. 3-21
Host Fonts ... 3-21
User Defined Metafont.. 3-21

Programming with Menu Bars .. 3-21
Menu Bar Functions.. 3-21
Processing Menu Bar Events .. 3-22

Using Callback Functions... .. 3-22
Using an Event Loop... 3-23

Menu Bar Attributes.. 3-24
Menu Bar Attribute Discussion... 3-26

Programming with Controls.. 3-28
Control Functions for All Controls ... 3-28
Control Functions for List Controls (List Boxes and Rings) 3-29

List Boxes and Rings... ... 3-29
List Boxes only... .. 3-30

Control Functions for Text Boxes... 3-30
Processing Control Events .. 3-31

Using Callback Functions... .. 3-31
Using an Event Loop... 3-31

Control Attributes.. 3-32
Control Attribute Discussion... 3-46

Programming with Picture Controls.. 3-51
Simple Picture Control.. 3-52
Picture Control Attributes ... 3-52

Appearance of Picture Controls .. 3-53
Giving Picture Controls More Visual Impact 3-53

Programming with Canvas Controls ... 3-53
Functions for Drawing on Canvas... 3-53
Batch Drawing .. 3-54
Canvas Coordinate System ... 3-54
Offscreen Bitmap .. 3-55
Clipping... 3-55
Background Color ... 3-55
Pens ... 3-55
Pixel Values .. 3-56
Canvas Attribute Discussion ... 3-56

Using Rect and Point Structures ... 3-59
Functions and Macros for Making Rects and Points 3-59
Functions for Modifying Rects and Points.. 3-60
Functions for Comparing or Obtaining Values from Rects and Points 3-61

Contents

© National Instruments Corporation ix LabWindows/CVI User Interface Reference

Using Bitmap Objects ... 3-61
Functions for Creating, Extracting, or Discarding Bitmap Objects.............. 3-62
Windows Metafiles ... 3-63
Functions for Displaying or Copying Bitmap Objects.................................. 3-63
Functions for Retrieving Image Data from Bitmap Objects 3-63

Programming with Timer Controls ... 3-63
Timer Control Functions ... 3-63

Using Timer Callbacks.. 3-64
Timer Control Attributes... 3-64
Timer Control Attribute Discussion.. 3-65
Details of Timer Control Operations... 3-65

Programming with Graph and Strip Chart Controls ... 3-65
Functions for Graphs and Strip Charts.. 3-66
Functions for Graphs Only.. 3-66
Functions for Strip Charts Only .. 3-67
Processing Graph and Strip Chart Events ... 3-67
Graph and Strip Chart Attributes .. 3-68

Graph Attribute Discussion... 3-77
Plot Origin Discussion .. 3-80
Two Y Axis (graphs only)... 3-81

Optimizing Graph Controls... 3-82
Optimizing Speed.. 3-82

Speed and ATTR_SMOOTH_UPDATE .. 3-82
Speed and VAL_AUTO_SCALE ... 3-82
Controlling How Graphs Refresh.. 3-83

Optimizing Memory Usage... 3-84
Programming with Pop-Up Panels.. 3-85
Using the System Attributes.. 3-85

Unsafe Timer Events... 3-86
Reporting Load Failures.. 3-87
Suppressing Event Processing... 3-88

Generating Hard Copy Output .. 3-88
Functions for Hard Copy Output... 3-88
Hard Copy Attributes .. 3-89

Hard Copy Attribute Discussion ... 3-90
Special User Interface Functions .. 3-91

RunUserInterface .. 3-91
Precedence of Callback Functions .. 3-91
Swallowing Events.. 3-92
GetUserEvent .. 3-92
InstallMainCallback and SetIdleEventRate .. 3-92
ProcessDrawEvents... 3-93
ProcessSystemEvents.. 3-93
PostDeferredCall ... 3-94
QueueUserEvent ... 3-94
FakeKeystroke... 3-94

Contents

LabWindows/CVI User Interface Reference x © National Instruments Corporation

QuitUserInterface.. 3-94

Chapter 4
User Interface Library Reference.. 4-1

User Interface Library Overview .. 4-1
User Interface Function Panels ... 4-1
Hard Copy Output ... 4-9

Compatible Printers... 4-9
Obtaining Hard Copy Output .. 4-9
Configuring Your System for Hard Copy Output............................. 4-9

RGB Color Values .. 4-10
Fonts.. 4-10
Shortcut Keys .. 4-10
Plot Array Data Types... 4-11
Include Files .. 4-12
Reporting Errors.. 4-12

User Interface Library Function Reference... 4-12
AllocBitmapData... 4-12
AllocImageBits ... 4-13
CanvasClear .. 4-15
CanvasDefaultPen ... 4-16
CanvasDimRect... 4-17
CanvasDrawArc .. 4-18
CanvasDrawBitmap .. 4-20
CanvasDrawLine... 4-21
CanvasDrawLineTo .. 4-23
CanvasDrawOval .. 4-23
CanvasDrawPoint.. 4-25
CanvasDrawPoly... 4-26
CanvasDrawRect... 4-27
CanvasDrawRoundedRect .. 4-28
CanvasDrawText... 4-29
CanvasDrawTextAtPoint .. 4-31
CanvasEndBatchDraw .. 4-33
CanvasGetClipRect ... 4-34
CanvasGetPenPosition .. 4-35
CanvasGetPixel ... 4-36
CanvasGetPixels ... 4-37
CanvasInvertRect .. 4-38
CanvasScroll ... 4-39
CanvasSetClipRect.. 4-40
CanvasSetPenPosition... 4-41
CanvasStartBatchDraw ... 4-42
CanvasUpdate ... 4-43
CheckListItem... 4-44
ClearAxisItems.. 4-45

Contents

© National Instruments Corporation xi LabWindows/CVI User Interface Reference

ClearListCtrl.. 4-46
ClearStripChart ... 4-46
ClipboardGetBitmap ... 4-47
ClipboardGetText.. 4-48
ClipboardPutBitmap.. 4-48
ClipboardPutText .. 4-49
ConfigurePrinter.. 4-50
ConfirmPopup ... 4-50
CreateMetaFont... 4-51
DefaultCtrl... 4-53
DefaultPanel .. 4-53
DeleteAxisItem ... 4-54
DeleteGraphPlot .. 4-55
DeleteImage .. 4-57
DeleteListItem... 4-57
DeleteTextBoxLine ... 4-58
DirSelectPopup ... 4-59
DiscardBitmap... 4-60
DiscardCtrl .. 4-60
DiscardMenu ... 4-61
DiscardMenuBar ... 4-61
DiscardMenuItem.. 4-62
DiscardPanel ... 4-62
DiscardSubMenu... 4-63
DisplayImageFile .. 4-64
DisplayPCXFile .. 4-65
DisplayPanel ... 4-65
DOSColorToRGB ... 4-66
DOSCompatWindow .. 4-67
DuplicateCtrl ... 4-68
DuplicatePanel .. 4-69
EmptyMenu... 4-70
EmptyMenuBar ... 4-70
FakeKeystroke... 4-71
FileSelectPopup... 4-71
FontSelectPopup ... 4-73
GenericMessagePopup.. 4-76
Get3dBorderColors ... 4-78
GetActiveCtrl .. 4-79
GetActiveGraphCursor ... 4-79
GetActivePanel ... 4-80
GetAxisItem .. 4-81
GetAxisItemLabelLength.. 4-82
GetAxisRange ... 4-83
GetAxisScalingMode .. 4-85
GetBitmapData.. 4-86

Contents

LabWindows/CVI User Interface Reference xii © National Instruments Corporation

GetBitmapFromFile .. 4-88
GetBitmapInfo... 4-89
GetCtrlAttribute .. 4-90
GetCtrlBitmap ... 4-91
GetCtrlBoundingRect.. 4-92
GetCtrlDisplayBitmap... 4-93
GetCtrlIndex.. 4-94
GetCtrlVal ... 4-95
GetCursorAttribute.. 4-96
GetCVITaskHandle... 4-97
GetCVIWindowHandle... 4-97
GetGlobalMouseState ... 4-98
GetGraphCursor .. 4-99
GetGraphCursorIndex ... 4-100
GetImageBits... 4-101
GetImageInfo .. 4-104
GetIndexFromValue.. 4-105
GetLabelFromIndex .. 4-106
GetLabelLengthFromIndex... 4-106
GetListItemImage ... 4-107
GetMenuBarAttribute ... 4-108
GetMouseCursor ... 4-109
GetNumAxisItems... 4-109
GetNumCheckedItems .. 4-111
GetNumListItems.. 4-111
GetNumTextBoxLines .. 4-112
GetPanelAttribute.. 4-113
GetPanelDisplayBitmap.. 4-113
GetPanelMenuBar ... 4-115
GetPlotAttribute .. 4-115
GetPrintAttribute... 4-116
GetRelativeMouseState... 4-117
GetScreenSize ... 4-118
GetSharedMenuBarEventPanel... 4-118
GetSleepPolicy.. 4-119
GetSystemAttribute... 4-119
GetSystemPopupsAttribute ... 4-120
GetTextBoxLine.. 4-120
GetTextBoxLineLength .. 4-121
GetTextDisplaySize .. 4-122
GetTraceAttribute ... 4-122
GetUILErrorString .. 4-123
GetUserEvent .. 4-124
GetValueFromIndex.. 4-125
GetValueLengthFromIndex .. 4-125
GetWaitCursorState .. 4-126

Contents

© National Instruments Corporation xiii LabWindows/CVI User Interface Reference

HidePanel .. 4-127
InsertAxisItem... 4-127
InsertListItem .. 4-129
InsertSeparator .. 4-131
InsertTextBoxLine .. 4-131
InstallCtrlCallback .. 4-132
InstallMainCallback .. 4-134
InstallMenuCallback ... 4-135
InstallMenuDimmerCallback.. 4-136
InstallPanelCallback.. 4-137
InstallPopup... 4-138
IsListItemChecked .. 4-139
LoadMenuBar ... 4-139
LoadMenuBarEx ... 4-141
LoadPanel.. 4-142
LoadPanelEx ... 4-144
MakeColor... 4-145
MakePoint ... 4-147
MakeRect .. 4-147
MessagePopup... 4-148
MultiFileSelectPopup.. 4-149
NewBitmap ... 4-150
NewCtrl ... 4-152
NewMenu.. 4-153
NewMenuBar .. 4-154
NewMenuItem... 4-155
NewPanel .. 4-157
NewSubMenu.. 4-159
PlotArc .. 4-159
PlotBitmap... 4-161
PlotIntensity .. 4-162
PlotLine ... 4-165
PlotOval... 4-166
PlotPoint .. 4-167
PlotPolygon ... 4-168
PlotRectangle .. 4-170
PlotScaledIntensity.. 4-172
PlotStripChart.. 4-175
PlotStripChartPoint ... 4-177
PlotText ... 4-178
PlotWaveform ... 4-180
PlotX ... 4-182
PlotXY... 4-183
PlotY ... 4-184
PointEqual ... 4-186
PointPinnedToRect ... 4-187

Contents

LabWindows/CVI User Interface Reference xiv © National Instruments Corporation

PointSet ... 4-187
PostDeferredCall ... 4-188
PrintCtrl... 4-189
PrintPanel .. 4-190
PrintTextBuffer ... 4-192
PrintTextFile ... 4-193
ProcessDrawEvents... 4-194
ProcessSystemEvents.. 4-194
PromptPopup... 4-195
QueueUserEvent ... 4-196
QuitUserInterface.. 4-196
RecallPanelState.. 4-197
RectBottom ... 4-198
RectCenter... 4-198
RectContainsPoint... 4-199
RectContainsRect.. 4-200
RectEmpty... 4-200
RectEqual .. 4-201
RectGrow .. 4-201
RectIntersection... 4-202
RectMove .. 4-203
RectOffset ... 4-203
RectRight... 4-204
RectSameSize.. 4-205
RectSet .. 4-205
RectSetBottom .. 4-206
RectSetCenter.. 4-206
RectSetFromPoints.. 4-207
RectSetRight ... 4-208
RectUnion ... 4-208
RefreshGraph .. 4-209
RegisterWinMsgCallback ... 4-209
RemovePopup ... 4-211
ReplaceAxisItem... 4-212
ReplaceListItem .. 4-213
ReplaceTextBoxLine... 4-214
ResetTextBox.. 4-214
ResetTimer .. 4-215
ResumeTimerCallbacks .. 4-216
RunPopupMenu... 4-216
RunUserInterface .. 4-218
SavePanelState .. 4-219
SetActiveCtrl... 4-220
SetActiveGraphCursor .. 4-220
SetActivePanel .. 4-221
SetAxisScalingMode... 4-222

Contents

© National Instruments Corporation xv LabWindows/CVI User Interface Reference

SetAxisRange.. 4-223
SetCtrlAttribute ... 4-225
SetCtrlBitmap.. 4-226
SetCtrlIndex .. 4-228
SetCtrlVal.. 4-228
SetCursorAttribute .. 4-229
SetFontPopupDefaults... 4-230
SetGraphCursor... 4-232
SetGraphCursorIndex.. 4-233
SetIdleEventRate... 4-234
SetImageBits ... 4-235
SetInputMode.. 4-238
SetListItemImage .. 4-239
SetMenuBarAttribute .. 4-240
SetMouseCursor.. 4-240
SetPanelAttribute .. 4-241
SetPanelMenuBar.. 4-242
SetPanelPos ... 4-242
SetPlotAttribute... 4-243
SetPrintAttribute ... 4-244
SetSleepPolicy... 4-244
SetSystemAttribute ... 4-245
SetSystemPopupsAttribute.. 4-246
SetTraceAttribute .. 4-246
SetWaitCursor ... 4-247
SuspendTimerCallbacks.. 4-248
UnRegisterWinMsgCallback .. 4-248
ValidatePanel .. 4-249
WaveformGraphPopup ... 4-250
XGraphPopup.. 4-251
XYGraphPopup... 4-251
YGraphPopup.. 4-252

Chapter 5
LabWindows/CVI Sample Programs... 5-1

Example Program Files ... 5-1
Using the Sample Programs.. 5-2

1. io.prjStandard I/O.. 5-3
2. callback.prjIntroduction to Callback Functions 5-3
3. events.prjUser Interface Events .. 5-3
4. menus.prjMenus Controlled by Callback Functions................. 5-3
5. graphs.prjGraphs ... 5-3
6. chart.prjStrip Charts .. 5-3
7. cursors.prjGraph Cursors .. 5-3
8. popups.prjPop-Up Panels.. 5-3

Contents

LabWindows/CVI User Interface Reference xvi © National Instruments Corporation

9. listbox.prjSelection Lists... 5-4
10. panels.prjChild Windows.. 5-4
11. timerctl.prj—Timer Controls .. 5-4
12. textbox.prjText Boxes ... 5-4
13. picture.prjUsing Picture Controls.. 5-4
14. build.prjBuilding a User Interface Programmatically............. 5-4
15. getusrev.prjProgramming with Event Loops 5-4
16. keyfiltr.prjHandling Keyboard Input 5-5
17. moustate.prjGetting the Mouse State 5-5
18. listdelx.prjColors in List Boxes... 5-5
19. 2yaxis.prj - Two Y Axes on a Graph .. 5-5
20. intgraph.prj - Intensity Plots... 5-5
21. autostrp.prj - Autoscaling the Y-Axis on a Strip Chart.............. 5-5
22. canvas.prj - Canvas Controls.. 5-6
23. canvsbmk.prj - Canvas Benchmark.. 5-6
24. drawpad.prj - Using Canvas as Drawing Pad............................ 5-6
25. piedemo.prj - Pie Chart .. 5-6
26. imagedit.prj - Changing Image Colors....................................... 5-6
27. clipbord.prj - Using System Clipboard 5-6

Appendix A
Error Conditions ...A-1

Appendix B
Customer Communication...B-1

Glossary..Glossary-1

Index .. Index-1

Figures

Figure 1-1. A Typical LabWindows/CVI Graphical User Interface.................................... 1-1
Figure 1-2. The Out Of Range Dialog Box.. 1-4
Figure 1-3. A Child Panel Within a Parent Panel .. 1-5
Figure 1-4. A Menu Bar and Pull-Down Menu ... 1-6
Figure 1-5. A Pull-Down Menu with a Sub-Menu .. 1-6
Figure 1-6. Numeric Controls .. 1-8
Figure 1-7. A String Control .. 1-9
Figure 1-8. A Text Message... 1-10
Figure 1-9. A Text Box Control ... 1-10
Figure 1-10. The Command Button Controls .. 1-11
Figure 1-11. The Toggle Button Controls.. 1-11
Figure 1-12. The LED Controls ... 1-12
Figure 1-13. The Binary Switch Controls .. 1-12
Figure 1-14. Ring Controls .. 1-13

Contents

© National Instruments Corporation xvii LabWindows/CVI User Interface Reference

Figure 1-15. A Ring Control in Pop-Up Format .. 1-13
Figure 1-16. A Selection List Control in Check Mode .. 1-14
Figure 1-17. GUI Decorations.. 1-16
Figure 1-18. A Graph Control .. 1-16
Figure 1-19. A Strip Chart Control .. 1-20
Figure 1-20. The Timer Control... 1-21
Figure 1-21. A Message Pop-Up Panel.. 1-22
Figure 1-22. A Generic Message Pop-Up Panel .. 1-22
Figure 1-23. A Prompt Pop-Up Panel .. 1-22
Figure 1-24. A Confirm Pop-Up Panel .. 1-23
Figure 1-25. A File Select Pop-Up Panel under Windows 3.1 .. 1-23
Figure 1-26. A File Select Pop-Up Panel under Windows 95 ... 1-24
Figure 1-27. A Graph Pop-Up Panel.. 1-24

Figure 2-1. A User Interface Editor Window... 2-1
Figure 2-2. The File Menu ... 2-3
Figure 2-3. The Edit Menu... 2-5
Figure 2-4. The Menu Bar List Dialog Box... 2-7
Figure 2-5. The Edit Menu Bar Dialog Box .. 2-8
Figure 2-6. Source Code Connection ... 2-9
Figure 2-7. Panel Attributes ... 2-10
Figure 2-8. Quick Edit Window... 2-10
Figure 2-9. Source Code Connection ... 2-11
Figure 2-10. Control Settings for a Numeric Control .. 2-12
Figure 2-11. The Edit Label/Value Pairs Dialog Box.. 2-12
Figure 2-12. Control Appearance for a Numeric Control .. 2-13
Figure 2-13. Label Appearance for a Numeric Control ... 2-13
Figure 2-14. Quick Edit Window... 2-14
Figure 2-15. The Edit Tab Order Dialog Box .. 2-15
Figure 2-16. The Create Menu... 2-16
Figure 2-17. The View Menu... 2-17
Figure 2-18. Find UIR Objects Dialog Box ... 2-17
Figure 2-19. Find UIR Objects Dialog Box After a Search Executes 2-18
Figure 2-20. The Show/Hide Panel Sub-Menu.. 2-19
Figure 2-21. The Arrange Menu .. 2-20
Figure 2-22. The Alignment Menu .. 2-20
Figure 2-23. The Distribution Submenu .. 2-21
Figure 2-24. The Code Menu ... 2-23
Figure 2-25. The Set Target File Dialog Box .. 2-23
Figure 2-26. The Generate Menu ... 2-24
Figure 2-27. The Generate Code Dialog Box .. 2-24
Figure 2-28. The Generate All Code Dialog Box .. 2-25
Figure 2-29. The Generate Main Function Dialog Box ... 2-26
Figure 2-30. The View Menu... 2-29
Figure 2-31. The Preferences Menu... 2-29
Figure 2-32. The Options Menu... 2-31
Figure 2-33. The User Interface Preferences Dialog Box.. 2-32

Figure 3-1. The Callback Function Concept .. 3-5
Figure 3-2. The Event Loop Concept... 3-8
Figure 3-3. The Geometric Attributes of a Panel... 3-18

Contents

LabWindows/CVI User Interface Reference xviii © National Instruments Corporation

Tables

Table 1-1. Keys For Selecting Cursors .. 1-17
Table 1-2. Image Formats .. 1-20

Table 3-1. User Interface Events.. 3-4
Table 3-2. Panel Attributes .. 3-12
Table 3-3. Common Color Values ... 3-17
Table 3-4. Values and Cursor Styles for ATTR_MOUSE_CURSOR................................. 3-19
Table 3-5. Font Values... 3-20
Table 3-6. Menu and Menu Item Attributes... 3-24
Table 3-7. Key Modifiers and Virtual Keys... 3-26
Table 3-8. Constants for Masking Three Bit Fields in GetMenuBarAttribute 3-28
Table 3-9. Control Attributes ... 3-32
Table 3-10. Control Styles for ATTR_CTRL_STYLE.. 3-46
Table 3-11. Control Data Types for the ATTR_DATA_TYPE attribute 3-50
Table 3-12. Numeric Formats .. 3-51
Table 3-13. ATTR_CHECK_RANGE Values... 3-51
Table 3-14. Control Attributes for Canvas Controls.. 3-56
Table 3-15. Values for ATTR_DRAW_POLICY.. 3-57
Table 3-16. Values for ATTR_OVERLAPPED_POLICY.. 3-58
Table 3-17. Values for ATTR_PEN_MODE... 3-58
Table 3-18. Values and Macros for Rect Structures .. 3-60
Table 3-19. Timer Control Attributes .. 3-64
Table 3-20. Graph and Strip Chart Attributes.. 3-68
Table 3-21. Cursor Styles for ATTR_CROSS_HAIR_STYLE... 3-78
Table 3-22. Styles for ATTR_CURSOR_POINT_STYLE

and ATTR_TRACE_POINT_STYLE .. 3-78
Table 3-23. Line Styles for ATTR_LINE_STYLE.. 3-79
Table 3-24. Plot Styles for ATTR_PLOT_STYLE.. 3-80
Table 3-25. Values for ATTR_PLOT_ORIGIN ... 3-81
Table 3-26. System Attributes.. 3-86
Table 3-27. Hard Copy Attributes.. 3-89
Table 3-28. Values for ATTR_COLOR_MODE... 3-91

Table 4-1. The User Interface Library Function Tree.. 4-2

Table 5-1. Sample Program Files.. 5-2

© National Instruments Corporation xix LabWindows/CVI User Interface Reference

About This Manual

The LabWindows/CVI User Interface Reference Manual contains information about creating and
controlling custom user interfaces with the LabWindows/CVI User Interface Library. To use
this manual effectively, you need to be familiar with the information in Getting Started with
LabWindows/CVI and the LabWindows/CVI User Manual. Also, you should know how to
perform basic tasks with LabWindows/CVI and Windows.

You should read Chapter 1, User Interface Concepts, and Chapter 3, Programming with the User
Interface Library, before you develop a program with the User Interface Library. You should
also examine and execute the example programs outlined in Chapter 5, LabWindows/CVI Sample
Programs. These examples illustrate many of the concepts presented in Chapters 1 and 3 and
should help you develop your own user interface.

Organization of This Manual

The LabWindows/CVI User Interface Reference Manual is organized as follows.

• Chapter 1, User Interface Concepts, describes building and controlling a graphical user
interface in LabWindows/CVI. It explains how your user interface resource (.uir) files
and your code files interact, so that you can structure your event-driven programs correctly.
In addition, it describes the objects and concepts that comprise a graphical user interface
(GUI). This chapter also describes how to operate menu bars, panels, and controls with the
keyboard and mouse.

• Chapter 2, User Interface Editor Reference, tells you how to create a GUI interactively. It
describes the User Interface Editor and the procedures for creating and editing panels,
controls, and menu bars.

• Chapter 3, Programming with the User Interface Library, describes how to use the User
Interface Library in the application programs you create.

• Chapter 4, User Interface Library Reference, describes the functions in the
LabWindows/CVI User Interface Library. The User Interface Library Function Overview
section contains general information about the User Interface Library functions and panels.
The User Interface Library Function Reference section contains an alphabetical list of
function descriptions.

• Chapter 5, LabWindows/CVI Sample Programs, contains a list of the sample programs in
LabWindows/CVI and a brief description of each.

• Appendix A, Error Conditions, lists the meanings associated with the integer error codes that
the LabWindows/CVI User Interface library functions return.

About This Manual

LabWindows/CVI User Interface Reference xx © National Instruments Corporation

• Appendix B, Customer Communication, contains forms you can use to request help from
National Instruments or to comment on our products and manuals.

• The Glossary contains an alphabetical list and description of terms used in this manual,
including abbreviations, acronyms, metric prefixes, mnemonics, and symbols.

• The Index contains an alphabetical list of key terms and topics in this manual, including the
page where you can find each one.

Conventions Used in This Manual

The following conventions are used in this manual.

bold Bold text denotes a parameter, menu item, return value, function panel
item, or dialog box button or option.

italic Italic text denotes emphasis, a cross reference, or an introduction to a
key concept.

bold italic Bold italic text denotes a note, caution, or warning.

monospace Text in this font denotes text or characters that you should literally
enter from the keyboard. Sections of code, programming examples,
and syntax examples also appear in this font. This font also is used for
the proper names of disk drives, paths, directories, programs,
subprograms, subroutines, device names, variables, filenames, and
extensions, and for statements and comments taken from program code.

italic monospace Italic text in this font denotes that you must supply the appropriate
words or values in the place of these items.

< > Angle brackets enclose the name of a key. A hyphen between two or
more key names enclosed in angle brackets denotes that you should
simultaneously press the named keys, for example, <Ctrl-Alt-Delete>.

» The » symbol leads you through nested menu items and dialog box
options to a final action. The sequence File » Page Setup »
Options » Substitute Fonts directs you to pull down the File
menu, select the Page Setup item, select Options, and finally
select the Substitute Fonts option from the last dialog box.

paths Paths in this manual are denoted using backslashes (\) to separate
drive names, directories, and files, as in the following path.
drivename\dir1name\dir2name\myfile

Acronyms, abbreviations, metric prefixes, mnemonics, and symbols, and terms are listed in the
Glossary.

About This Manual

© National Instruments Corporation xxi LabWindows/CVI User Interface Reference

Customer Communication

National Instruments wants to receive your comments on our products and manuals. We are
interested in the applications you develop with our products, and we want to help you if you
have problems with them. To make it easy for you to contact us, this manual contains comment
and technical support forms for you to complete. These forms are in Appendix B, Customer
Communication, at the end of this manual.

© National Instruments Corporation 1-1 LabWindows/CVI User Interface Reference

Chapter 1
User Interface Concepts

This chapter describes building and controlling a graphical user interface in LabWindows/CVI.
It explains how your user interface resource (.uir) files and your code files interact, so that you
can structure your event-driven programs correctly. In addition, it describes the objects and
concepts that comprise a graphical user interface. This chapter also describes how to operate
menu bars, panels, and controls with the keyboard and mouse.

Introduction to the Graphical User Interface

A LabWindows/CVI graphical user interface (GUI) can consist of panels, command buttons,
pull-down menus, graphs, strip charts, knobs, meters, and many other controls and indicators.
Figure 1-1 shows a typical GUI created with LabWindows/CVI. You can build a GUI in
LabWindows/CVI interactively using the User Interface Editor, a drop-and-drag editor with
tools for designing, arranging and customizing user interface objects. With the interactive User
Interface Editor, you can build an extensive GUI for your program without writing a single line
of code. When you are finished designing your GUI in the User Interface Editor, you save the
GUI as a User Interface Resource (.uir) file. Chapter 2, User Interface Editor Reference, has
detailed information on the User Interface Editor.

In addition to the User Interface Editor, the User Interface Library has functions for creating or
altering the appearance of the controls on your GUI during run-time, so you can
programmatically add to, change, or build your entire GUI.

Figure 1-1. A Typical LabWindows/CVI Graphical User Interface

User Interface Concepts Chapter 1

LabWindows/CVI User Interface Reference 1-2 © National Instruments Corporation

User Interface Events

When you design a user interface, you are defining areas on your computer screen, in the form of
controls, that can generate events. For example, when you click on a command button, the
button generates a user interface event which is then passed to your C program. Actually,
LabWindows/CVI controls generate multiple user interface events. For example, a single
mouse-click on a command button will pass the following user interface events to your program
for processing.

1. GOT_FOCUS event—If the command button is not the active control (does not have the
input focus), a mouse-click on the button will make it the active control. When a control gets
the input focus, a GOT_FOCUS event occurs.

2. LEFT_CLICK event—When users click with the left mouse button on the command button,
a LEFT_CLICK event occurs. LabWindows/CVI user interface controls can recognize left,
right, single, and double mouse clicks.

3. COMMIT event—When the user releases the mouse button, a COMMIT event occurs
signifying that the user has performed a commit event on the control.

Each control type available in the LabWindows/CVI User Interface Editor displays different
types of information and passes different user interface events to your program. The first half of
this chapter introduces each control type available in LabWindows/CVI, telling you how to
operate each control type and which events can be passed by each control type.

Controlling Your User Interface Using Callbacks or GetUserEvent

Once you have built your GUI in LabWindows/CVI, you must develop a C program to process
the events generated from the user interface and control the flow of your program.
LabWindows/CVI offers two basic methods for designing your programs: callback functions and
event-loops. When you use callback functions, you write individual functions in your program
that are called directly by user interface controls. For example, you may have a function in your
program called AcquireData which is assigned to a button labeled Acquire. Whenever the
Acquire button is clicked, all of the event information generated by the button will be passed
directly to the AcquireData function where it is processed.

Alternatively, you can use an event-loop to process your user interface commit events in
LabWindows/CVI. With an event-loop, all commit events are funneled through a call to the
GetUserEvent function in your program. The GetUserEvent function identifies which
controls generated the events and your program processes the events accordingly.

Both callback functions and event-loops have advantages, depending on your application. You
can use either method in your program, or combine methods for added flexibility. For further
details, read the section Creating a Graphical User Interface in Chapter 3 of this manual,
Programming with the User Interface Library.

Chapter 1 User Interface Concepts

© National Instruments Corporation 1-3 LabWindows/CVI User Interface Reference

Source Code Connection

To establish the connection between your .uir files and your C source files you must include a
header file in your source code. When you create a control in the User Interface Editor, you
must assign some information to the control so that it can be properly accessed by your program.
Each control is given a constant name in the User Interface Editor. The constant name is used in
functions from the User Interface Library in your program to identify the controls on your GUI.
For example, you define a numeric readout on your user interface with the constant name
READOUT, residing on a panel with the constant name PANEL. To set the value displayed in the
readout from your program, you would call the function SetCtrlVal with the name
PANEL_READOUT as one of the parameters to specify the control in which to set the value.

In addition to assigning constant names to each control on your GUI, you can also assign
callback functions to controls in the User Interface Editor. For example, if you wanted a
function called AcquireData to be executed whenever the command button ACQUIRE is
clicked, you assign the callback function name AcquireData to the ACQUIRE button in the
User Interface Editor.

Whenever you save a .uir file in the User Interface Editor, LabWindows/CVI automatically
creates a corresponding header (.h) file with the same base filename. The header file declares
all of the constant names and callback functions that you have assigned within the .uir file.
By including the header file in your source code, all of the constant names and callback
functions associated with your GUI are automatically declared.

Control Modes for Generating Commit Events

Commit events are generated when the user of the GUI actually commits to an operation such as
making a menu selection or typing in a number and pressing <Enter>. When you create a
control you can assign one of the following control modes, which determines how the control
generates commit events.

• Normal

• Indicator

• Hot

• Validate

Normal specifies that the user can operate the control and that it can be changed
programmatically.

Indicator specifies that you can change the control programmatically but users cannot generate
commit or value changed events. Strip chart and text message controls are always indicators.

User Interface Concepts Chapter 1

LabWindows/CVI User Interface Reference 1-4 © National Instruments Corporation

Hot is identical to normal except that the control generates a commit event when acted upon by
the user. Normally, a hot control generates a commit event when its state is changed. For
example, if the user moves a binary switch from off to on, a commit event is generated. The
following control types have unique rules on how commit events are generated.

• For hot numeric, string, and text box controls, a commit event is generated when the user
presses <Enter> or <Tab> after entering a value into the control, or if the user clicks
elsewhere with the mouse after entering a value into the control.

• For hot selection list controls not in check mode, a commit event is generated when the user
presses <Enter> while the control is active, or double-clicks on a list item.

• For hot selection list controls in check mode, a commit event is generated when the user
presses the spacebar while the control is active, or double-clicks on a list item.

• For hot graph controls, a commit event is generated when the user moves a cursor with the
arrow keys or when the user releases the mouse button after moving a cursor.

Validate is identical to hot except that, before the commit event is generated, the program
validates all numeric controls on the panel that have their range-checking attribute set to Notify.
LabWindows/CVI checks the control value against a predefined range. If it finds an invalid
condition, LabWindows/CVI activates the control, causing a notification box like the one shown
in Figure 1-2 to display. The validate control cannot generate a commit event until the user
enters a new, valid value into all controls that are out of range. This process ensures that all
numeric/scalar controls are valid before the commit event is reported to your application
program.

Figure 1-2. The Out Of Range Dialog Box

Using CodeBuilder to Create Source Code for Your GUI

With the LabWindows/CVI CodeBuilder, you can create automatically complete C code that
compiles and runs based on a user interface (.uir) file you are creating or editing. By choosing
certain options presented to you in the Code menu of the User Interface Editor, you can produce
skeleton code. Skeleton code is syntactically and programmatically correct code that compiles

Chapter 1 User Interface Concepts

© National Instruments Corporation 1-5 LabWindows/CVI User Interface Reference

and runs before you have typed a single line of code. With the CodeBuilder feature, you save the
time of typing in standard code included in every program, eliminate syntax and typing errors,
and maintain an organized source code file with a consistent programming style. Because a
CodeBuilder program compiles and runs immediately, you can develop and test the project you
create, concentrating on one function at a time.

Operating a Graphical User Interface

Before creating your first GUI using LabWindows/CVI, you must understand the graphical
objects that are available and how they operate. You will learn how to operate all of the GUI
controls and indicators in this section.

Using Panels

A panel is a rectangular region of the screen where controls and menu bars reside. Panels
provide the backdrop for many different activities, such as representing the front panel
instrument.

Panels operate like windows. You can minimize panels, resize them, move them, overlap
multiple panels, or can contain another. An example of a child panel within a parent panel is
shown in Figure 1-3. The outer panel is called the parent panel; the inner panel is called a child
panel. Child panels can appear within other child panels. You cannot drag a child panel outside
its parent panel. If you shrink a parent panel, a child panel may be partially or completely
hidden in the shrunken panel view.

Figure 1-3. A Child Panel Within a Parent Panel

To operate a panel from the keyboard:

• Press <Shift-Ctrl> and the up arrow key to move to the parent panel of the current panel.

• Press <Shift-Ctrl> and the down arrow key to move to the child panel of the current panel.

User Interface Concepts Chapter 1

LabWindows/CVI User Interface Reference 1-6 © National Instruments Corporation

• Press <Shift-Ctrl> and the left or right arrow key to move to rotate between panels at the
current level in the panel hierarchy.

• Press <Tab> to move to the next control on a panel.

• Press <Shift-Tab> to move to the previous control on a panel.

To operate a panel with the mouse:

• Click anywhere inside a panel to make it active.

• Click anywhere on a control to make it active.

Using Menu Bars

A menu bar is a mechanism for encapsulating a set of commands. A menu bar appears as a bar
at the top of a panel and contains a set of menu titles. A sample menu bar and pull-down menu
appear in Figure 1-4.

Figure 1-4. A Menu Bar and Pull-Down Menu

A menu title ending in an exclamation point is called an immediate action menu and does not
have an associated pull-down menu. When the user clicks on an immediate action menu it
executes immediately.

A menu title without an exclamation point has a pull-down menu. The menu contains a
collection of menu items and submenu titles. Submenu items are displayed to the side of
submenu titles. A sample submenu appears in Figure 1-5.

Figure 1-5. A Pull-Down Menu with a Sub-Menu

To operate a menu bar from the keyboard:

• To display a menu or execute an immediate action menu, press the <Alt> key and the
underlined letter of the menu title. When a menu is displayed, its title is highlighted.

Chapter 1 User Interface Concepts

© National Instruments Corporation 1-7 LabWindows/CVI User Interface Reference

• Press the right or left arrow key to display adjacent menus.

• Press the up or down arrow key or the underlined letter of the menu item to select items in a
menu. When an item is selected, its label is highlighted.

• Press <Enter> to execute the highlighted item and remove the menu.

• Press <Esc> to remove the menu without executing a menu item.

To operate a menu bar with the mouse:

• To display a menu or execute an immediate menu, click on the menu title.

• To execute an item within a menu, click on the menu item. The menu disappears.

• Click anywhere outside the menu to remove the menu without executing the menu item.

Menu titles and menu items that are dimmed are not selectable.

Using Controls

A control is an object that resides on a panel to accept input from the user and to display
information. The User Interface Library supports the following control types.

• Numeric

• String

• Text Message

• Text Box

• Command Button

• Toggle Button

• LED

• Binary Switch

• Ring Control

• List Box

• Decorations

• Graphs and Strip Charts

User Interface Concepts Chapter 1

LabWindows/CVI User Interface Reference 1-8 © National Instruments Corporation

• Pictures

• Timer Control

• Canvas Control

To make a control ready to accept input, click on the control with the mouse or press <Tab> or
<Shift-Tab> to move from control to control. Pressing <Alt> and the underlined letter in the
label of the control makes that control ready to accept input, provided that no menu bars are
accessible.

Data Types of Controls

Every control has a data type associated with it. The data type of the control determines the data
type of variables used to set and obtain the value of the control. The following list shows
LabWindows/CVI control data types.

unsigned char
char
char *
unsigned short int
short int
unsigned long int
long int
float
double

Not all data types are valid for each type of control.

Numeric Controls

Numeric controls are used to input or display numeric values. A typical use of these controls
might be to input or display a voltage value. Numeric controls have many different graphical
representations, including knobs, meters, thermometers, gauges, and dials. The numeric controls
are shown in Figure 1-6.

Figure 1-6. Numeric Controls

Chapter 1 User Interface Concepts

© National Instruments Corporation 1-9 LabWindows/CVI User Interface Reference

When a numeric control is not restricted to indicator, you may change its value from the
keyboard or with the mouse.

To operate a numeric control from the keyboard:

• Press the left or right arrow key to move the cursor within the digital display of the control.

• Press the up or down arrow key to increase or decrease the value displayed in the control.

• Press <Home> to move the cursor to the beginning of the text.

• Press <End> to move the cursor to the end of the text.

• Press <Shift-Home> to highlight all text to the left of the cursor.

• Press <Shift-End> to highlight all text to the right of the cursor.

To operate a numeric control with the mouse:

• Click on the up/down arrows of the digital display to change the value of the control.

• Click on and drag the needle (for circular controls like knobs) or the slider (for slide
controls) to change the value of the control.

• Click on scale labels to set the control to the value of the label.

If the control mode of a numeric control is hot or validate, a commit event is generated when the
user presses the up or down arrow keys, or when the user changes the digital display of a
numeric control and then presses the <Enter> or <Tab> key or clicks on another object with the
mouse.

String Controls

String controls are used to input or view strings of character values. You can use these controls
to input a person’s name. A string control is shown in Figure 1-7.

Figure 1-7. A String Control

To operate a string control:

• Press the left or right arrow key to move the cursor around in the string control.

User Interface Concepts Chapter 1

LabWindows/CVI User Interface Reference 1-10 © National Instruments Corporation

• Press <Home> to move the cursor to the beginning of the text.

• Press <End> to move the cursor to the end of the text.

If the control mode of the string is hot or validate, a commit event is generated when the user
changes the string and then presses the <Enter> or <Tab> key or clicks on another object with
the mouse.

Text Messages

Text messages are indicator controls used to programmatically display strings of text. You
cannot operate them using the keyboard, but you can assign callback functions to them so that
they respond to mouse click events. A text message control is shown in Figure 1-8.

Figure 1-8. A Text Message

Text Box Controls

Text box controls are large string controls that feature line, word, and character wrap modes and
scroll bars to facilitate displaying large amounts of text. As with the string control, you can
interactively enter text into text boxes and you can control the text box programmatically.

A sample text box appears in Figure 1-9.

Figure 1-9. A Text Box Control

When entering text into a textbox:

• Press <Ctrl-Tab> to insert four spaces.

• Press <Ctrl-Enter> to start a new line.

• Press <Home> or <End> to move to the beginning or end of the current line.

• Press <Page Up> or <Page Down> to scroll the text box up or down one page.

Chapter 1 User Interface Concepts

© National Instruments Corporation 1-11 LabWindows/CVI User Interface Reference

• Text can be selected by holding down <Shift> and pressing the arrow keys, <Home>,
<End>, <Page Up>, or <Page Down>.

If the control mode of the text box is hot or validate, a commit event is generated when the user
changes the value of the text box and then presses the <Enter> or <Tab> key or clicks on another
object with the mouse.

Command Button Controls

Command buttons are used to trigger an action, which is indicated by the label on the button.
The command buttons are shown in Figure 1-10.

Figure 1-10. The Command Button Controls

To operate a command button from the keyboard, press <Enter> or <space> to activate the
button. If the control mode of the button is hot or validate, a commit event will be generated
when the user presses the <Enter> or <space> key. The button changes appearance momentarily
to indicate that it was selected.

To operate a push button with the mouse, click on the button. The button remains depressed
until the user releases the mouse or moves it off the button. If the control mode of the command
button is hot or validate, a commit event is generated when the user clicks and releases the
mouse over the command button area. If the user releases the mouse outside of the button area,
a commit event is not generated.

Toggle Button Controls

Toggle buttons allow you to select between two different states. A toggle button has two
positions: pressed or unpressed. When the button is pressed its value is 1, and when it is
unpressed its value is 0. The toggle buttons are shown in Figure 1-11.

Figure 1-11. The Toggle Button Controls

User Interface Concepts Chapter 1

LabWindows/CVI User Interface Reference 1-12 © National Instruments Corporation

To operate a toggle button from the keyboard:

• Press the up arrow key or <Home> to press the toggle button in.

• Press the down arrow key or <End> to pop the toggle button out.

• Press <space> or <Enter> to change the state of the button.

To operate a toggle button with the mouse, click on the toggle button to change its state.

If the control mode of the toggle button is hot or validate, a commit event is generated when the
button is active and the user changes its state.

LED Controls

LEDs (Light Emitting Diodes) indicate an on/off state. When the LED is on, its value is 1 and it
displays its ON color. When the LED is off, its value is 0 and it displays its OFF color. The
LED controls are shown in Figure 1-12.

Figure 1-12. The LED Controls

LED controls operate like toggle button controls.

Binary Switch Controls

Binary switches, like toggle buttons, allow you to select between two states: on or off. You can
also associate a value with each state of a binary switch. The binary switches are shown in
Figure 1-13.

Figure 1-13. The Binary Switch Controls

Binary switch controls operate like toggle button controls.

Chapter 1 User Interface Concepts

© National Instruments Corporation 1-13 LabWindows/CVI User Interface Reference

Ring Controls

You use ring controls to select from a group of items. Many of the ring controls look like
numeric controls, but ring controls have a finite set of label/value pairs. The ring controls are
shown in Figure 1-14.

Figure 1-14. Ring Controls

To operate a ring control from the keyboard:

• Press the up arrow key to select the previous ring control item.

• Press the down arrow key to select the next ring control item.

Ring controls with arrows can also be operated in pop-up format, in which a linear list of all the
ring items is displayed at once. A sample ring control in pop-up format is shown in Figure 1-15.

Figure 1-15. A Ring Control in Pop-Up Format

To operate a ring control pop-up with the keyboard:

• Press <space> to display the ring control pop-up.

• Press the up and down arrow keys to highlight particular items.

• Press <Enter> to select the highlighted item. The pop-up control disappears and the ring
control is updated to match the new selection.

User Interface Concepts Chapter 1

LabWindows/CVI User Interface Reference 1-14 © National Instruments Corporation

• Press <Esc> to remove the pop-up without changing the selected item.

To operate a ring with the mouse:

• If the ring control has arrows, click on the arrows to select the ring control items.

To operate a ring control pop-up with the mouse:

• Click on the ring control to display the ring pop-up.

• Click on an item to select it. The pop-up disappears and the ring control is updated to match
the new selection.

• When the pop-up exceeds the size of the screen, hold the mouse button down on the top item
to scroll up.

• When the pop-up exceeds the size of the screen, hold the mouse button down on the bottom
item to scroll down.

• Click on an item to select it. The pop-up disappears and the ring control is updated to match
the new selection.

• Click outside the menu to cancel the operation and remove the pop-up.

Note: If the ring pop-up exceeds twice the size of the screen, users see a list box instead of a
ring pop-up. See the section List Box Controls in this chapter for instructions on
operating list box controls.

If the control mode of a ring control is hot or validate, a commit event is generated when the user
changes the ring’s value.

List Box Controls

List box controls are used to select an item from a list. A sample selection list control is shown
in Figure 1-16.

Figure 1-16. A Selection List Control in Check Mode

Chapter 1 User Interface Concepts

© National Instruments Corporation 1-15 LabWindows/CVI User Interface Reference

The scroll bar on the right side of the list scrolls the list up and down.

To operate a list box control from the keyboard:

• Press the up arrow key to highlight the previous list item.

• Press the down arrow key to highlight the next list item.

• Press <Home> to scroll to the top of the list.

• Press <End> to scroll to the bottom of the list.

• Press <Page Up> to scroll up one page.

• Press <Page Down> to scroll down one page.

• Use the Quick Type feature to locate a list item. When you type A, Quick Type takes you to
the first occurrence of an item beginning with “A.” When you type a complete item name
Quick Type takes you to that item. (When you press a key after a delay of at least one
second, the Quick Type buffer is flushed.)

• Press the left arrow key to go to the previous item in the Quick Type buffer.

• Press the right arrow key to go to the next item in the Quick Type buffer.

• If the list box is in check mode, press <space> or <Enter> to toggle the check mark of the
current item.

To operate a list box control with the mouse:

• Click on an item to highlight it; this action toggles the check mark when in check mode.

• Double-click on an item to select it, when not in check mode.

• Hold the mouse button down on either arrow to scroll through the list.

• Drag the scroll bar marker to a new position.

• Click above the scroll bar marker to scroll up one page.

• Click below the scroll bar marker to scroll down one page.

To generate a commit event when a list box is set to hot or validate mode:

• When the control is set to Check Mode, select an item in the list box and press <space> or
click on it.

User Interface Concepts Chapter 1

LabWindows/CVI User Interface Reference 1-16 © National Instruments Corporation

• When the control is not set to Check Mode, select an item in the list box and press <Enter>
or double-click on it.

Decorations

Decorations are used to enhance the visual appeal of the GUI. They do not contain data but they
can be assigned callback functions so that they can respond to mouse click events. The
decorations are shown in Figure 1-17.

Figure 1-17. GUI Decorations

Graph Controls

Graph controls display graphical data as one or more plots. A plot consists of a curve, a point, a
geometric shape, or a text string. A sample graph control is shown in Figure 1-18.

Figure 1-18. A Graph Control

Chapter 1 User Interface Concepts

© National Instruments Corporation 1-17 LabWindows/CVI User Interface Reference

Graph controls can have one or more cursors associated with them. With cursors you can select
a point or region of the graph for further processing or analysis. If the graph control is hot,
cursors will generate commit events. If you want to use cursors, the graph controls must not be
in indicator mode.

To operate a graph with cursors using the keyboard, use the keys in the following tables for both
free-form and snap-to-point cursors.

Table 1-1. Keys For Selecting Cursors

When you press... You select...

<Page-Up> The previous cursor.

<Page-Down> The next cursor.

Left arrow key Left ten pixels.

Right arrow key Right ten pixels.

Up arrow key Up ten pixels.

Down arrow key Down ten pixels.

<Shift>-left arrow key Left one pixel.

<Shift>-right arrow key Right one pixel.

<Shift>-up arrow key Up one pixel.

<Shift>-down arrow key Down one pixel.

<Ctrl>-left arrow key To the left edge of the plot area.

<Ctrl>-right arrow key To the right edge of the plot area.

<Ctrl>-up arrow key To the top edge of the plot area.

<Ctrl>-down arrow key To the bottom edge of the plot area.

<Home> To the lower left corner of the plot area.

<End> To the upper right corner of the plot area.

Left arrow key To the previous point on the current plot.

Right arrow key To the next point on the current plot.

Up arrow key To the next point on the current plot.

Down arrow key To the previous point on the current plot.

<Shift>-left arrow key Back 10 points on the current plot.

(continues)

User Interface Concepts Chapter 1

LabWindows/CVI User Interface Reference 1-18 © National Instruments Corporation

Table 1-1. Keys For Selecting Cursors (Continued)

When you press... You select...

<Shift>-right arrow key Forward 10 points on the current plot.

<Shift>-up arrow key Forward 10 points on the current plot.

<Shift>-down arrow key Back 10 points on the current plot.

<Ctrl>-left arrow key Left to the closest point in the X direction on the
current plot.

<Ctrl>-right arrow key Right to the closest point in the X direction on the
current plot.

<Ctrl>-up arrow key Up to the closest point in the Y direction on the
current plot.

<Ctrl>-down arrow key Down to the closest point in the Y direction on the
current plot.

<Home> To the first visible point on the current plot.

<End> To the last visible point on the current plot

<Shift-Page Up> To the previous plot.

<Shift-Page Down> To the next plot.

If the graph is configured as a hot control, an event will be generated whenever the user presses
one of the preceding keys.

Operate a graph with cursors using the mouse as follows.

• Drag a cursor to move it. If the cursor is in snap-to-point mode, the cursor tracks the mouse
until the user releases the mouse button and then it snaps to the nearest data point. If the
cursor is in free-form mode, the cursor tracks the mouse until the user releases the mouse
button and then stays at the new position.

• Move the active cursor left and right by dragging the active cursor marker at the top or
bottom edge of the plot area. Likewise, you can move the active cursor up and down by
dragging the active cursor marker at the left or right edge of the plot area.

If the graph control is configured in hot mode, a commit event is generated whenever the user
moves a cursor using the arrow keys or releases the mouse after moving a cursor.

EVENT_VAL_CHANGED events are generated continuously while a user drags a graph cursor.

Chapter 1 User Interface Concepts

© National Instruments Corporation 1-19 LabWindows/CVI User Interface Reference

Zooming and Panning on Graphs

You can use zooming—the ability to expand or contract the viewport around a particular point—
in graph controls. When you zoom in, the logical area contained in the viewport gets smaller,
thereby showing the area with more resolution. When you zoom out, the viewport shows a wider
area. You can also use panning, the ability to shift the viewport.

By default, however, zooming and panning are disabled. You must explicitly enable them in the
User Interface Editor or programmatically. Also, a graph control must not be in indicator-only
mode if zooming and panning are to be used.

To start zooming in on a point, press the <Ctrl> key and left mouse button down over the point.
The resolution in the viewport is continuously increased until you release the mouse. (You do
not need to keep the <Ctrl> key down.) If you drag the mouse, the zooming continues but does
so over the new point under the mouse cursor. The zooming stops when you release the left
mouse button or click on the right mouse button.

You zoom out just like you zoom in, except that you use the right mouse button instead of the
left mouse button.

To start panning, press the <Ctrl-Shift> keys and the left mouse button over a point on the
viewport. Then drag the mouse to another point. The graph viewport is scrolled so that the
original point now appears under the new mouse cursor location. You can drag the mouse
anywhere on the screen.

To restore the viewport to its original state after zooming or panning, press <Ctrl-Spacebar>.

If you are using auto-scaling in the graph, the auto-scaling must be temporarily disabled while
zooming or panning. If any plotting occurs while the end-user is zooming or panning, the
zooming or panning is terminated and the new data is shown using auto-scaling.

User Interface Concepts Chapter 1

LabWindows/CVI User Interface Reference 1-20 © National Instruments Corporation

Strip Chart Controls

Strip chart controls display graphical data in real time. A strip chart consists of one or more
traces that are updated simultaneously. A sample strip chart control appears in the following
figure.

Figure 1-19. A Strip Chart Control

Picture Controls

A picture control allows you to place images on panels, such as logos and diagrams. For
example, you can use a picture control to place a schematic that instructs the user how to hook
up a unit for testing. When you want to place images on command or toggle buttons or on ring
controls, LabWindows/CVI frees you from programming the simple Picture control. Separate
command and toggle buttons and ring controls exist for pictures. For more information on those
picture controls, read the Programming with Picture Controls section of Chapter 3,
Programming with the User Interface Library.

The image formats that work with all types of picture controls appear in Table 1-2.

Table 1-2. Image Formats

Image Format Platform

PCX Windows and UNIX

BMP, DIB , RLE, ICO Windows only

XWD UNIX only

WMF Windows 95 and NT only

Chapter 1 User Interface Concepts

© National Instruments Corporation 1-21 LabWindows/CVI User Interface Reference

Timer Controls

Use Timer Controls to trigger actions at specific time intervals. The timer control schedules
these actions so that you do not have to. The timer control is shown in Figure 1-20.

Figure 1-20. The Timer Control

Timer controls repeat a given action at a specified time interval for an indefinite period of time,
which makes them useful programming tools when a repeated action is required. You can
specify a function to be called at the end of each interval.

LabWindows/CVI has functions to suspend and reset the timer controls.

Timer controls are not visible during program execution. They are only visible in the User
Interface Editor. For more information, read the Programming with Timer Controls section of
Chapter 3, Programming with the User Interface Library.

Canvas Controls

Use canvas controls as an arbitrary drawing surface. You can draw text, shapes, and bitmap
images. An offscreen bitmap is maintained so that the appearance of the canvas can be restored
when the region is exposed.

If you want to display images that are not rectangular or that have “holes” in them, you can use
bitmaps that have a transparent background.

Using Pop-Up Panels

A pop-up panel is a panel that pops up, accepts user input, and then disappears.

Pop-up panels can be stacked, with each new pop-up panel appearing on top of the previous one.
When a pop-up panel is active it appears in the foreground and is the only panel or pop-up you
can operate.

The User Interface Library contains a collection of predefined pop-up panels for common
operations, such as displaying a multi-line message, prompting the user for input, prompting the
user for confirmation, selecting a file, and graphing numerical data.

Specific function calls invoke each predefined pop-up panel. The function displays the pop-up
panel and waits for the user to select an action. Then the pop-up disappears and control returns
to the program.

User Interface Concepts Chapter 1

LabWindows/CVI User Interface Reference 1-22 © National Instruments Corporation

Operating the Message Pop-Up Panel

The message pop-up panel displays multi-line messages. Use the newline character (\n) to start
a new line of text. A sample message pop-up panel appears in the following figure.

Figure 1-21. A Message Pop-Up Panel

Operating the Generic Message Pop-Up Panel

The generic message pop-up panel displays a pop-up panel with a message string, a response
buffer, and up to three buttons with programmable labels. A sample generic message pop-up
panel appears in Figure 1-22.

Figure 1-22. A Generic Message Pop-Up Panel

Operating the Prompt Pop-Up Panel

The prompt pop-up panel requests input from the user. A sample prompt pop-up panel appears
in Figure 1-23.

Figure 1-23. A Prompt Pop-Up Panel

Chapter 1 User Interface Concepts

© National Instruments Corporation 1-23 LabWindows/CVI User Interface Reference

Operating the Confirm Pop-Up Panel

The confirm pop-up panel allows the user to confirm an action. A sample confirm pop-up panel
appears in Figure 1-24.

Figure 1-24. A Confirm Pop-Up Panel

Operating the File Select Pop-Up Panel

The file select pop-up panel displays a list of files on disk from which the user can select. A file
select pop-up panel for Windows 3.1 appears in the following figure.

Figure 1-25. A File Select Pop-Up Panel under Windows 3.1

A unique feature of this dialog box is the Directories ring in the upper-right corner of the dialog
box. When activated, this ring allows users to select from a list of directories that contain
previously opened files.

User Interface Concepts Chapter 1

LabWindows/CVI User Interface Reference 1-24 © National Instruments Corporation

A file select pop-up panel for Windows 95 appears in the following figure.

Figure 1-26. A File Select Pop-Up Panel under Windows 95

Operating Graph Pop-Up Panels

You can choose from four different types of graph pop-up panels to display a graph of numerical
data: X-graph pop-up, Y-graph pop-up, XY-graph pop-up, and Waveform graph pop-up. A
sample graph pop-up panel appears in the following figure.

Figure 1-27. A Graph Pop-Up Panel

Chapter 1 User Interface Concepts

© National Instruments Corporation 1-25 LabWindows/CVI User Interface Reference

Using Fonts

Metafonts That Use Typefaces Native To Each Platform

Metafonts contain typeface information, point size, and text styles such as bold, underline, italic,
and strikeout. The following metafonts use typefaces that are native to each platform supported
by LabWindows/CVI. Each of these metafonts has been specified so that the height and width of
the font is as similar as possible across platforms.

VAL_MENU_META_FONT
VAL_MESSAGE_BOX_META_FONT
VAL_DIALOG_META_FONT
VAL_EDITOR_META_FONT
VAL_APP_META_FONT

You can create metafonts from any font on your system with the CreateMetaFont function.

Fonts That Use Typefaces Native To Each Platform

The following fonts use typefaces that are native on both PC and UNIX systems. Fonts contain
typeface information only.

VAL_MENU_FONT
VAL_MESSAGE_BOX_FONT
VAL_DIALOG_FONT
VAL_EDITOR_FONT
VAL_APP_FONT

Metafonts That Use Typefaces Installed by LabWindows/CVI

The following metafonts are included in LabWindows/CVI, but use typefaces that are not native
to PC or UNIX systems. The typefaces are distributed with LabWindows/CVI and the run-time
engine.

VAL_7SEG_META_FONT
VAL_SYSTEM_META_FONT

© National Instruments Corporation 2-1 LabWindows/CVI User Interface Reference

Chapter 2
User Interface Editor Reference

As explained in Chapter 1, you can create your GUI programmatically using function calls or
interactively using the User Interface Editor. This chapter tells you how to create a GUI
interactively. It describes the User Interface Editor and the procedures for creating and editing
panels, controls, and menu bars.

When you use the User Interface Editor you create and modify user interface resource (.uir)
files. Enter the User Interface Editor by selecting New or Open from the File menu and
choosing User Interface (*.uir).

User Interface Editor Overview

A User Interface Editor window appears in the following figure.

Figure 2-1. A User Interface Editor Window

From this window, you can create and edit GUI panels, controls, and menu bars. The menus are
described in this chapter in the section User Interface Editor Menus. Use the tool bar beneath
the menu bar for high-level editing with the mouse. When you click on a particular tool, the
mouse cursor changes to reflect the new editing mode.

You can select, position, and size objects by using the Editing tool.

User Interface Editor Reference Chapter 2

LabWindows/CVI User Interface Reference 2-2 © National Instruments Corporation

You can modify text associated with objects by using the Labeling tool.

You can color objects by using the Coloring tool. Clicking the right mouse button displays
a color palette from which you can choose a color. Clicking the left mouse button
automatically colors the object with the current color of the Coloring tool. Holding down
the <Ctrl> key changes the tool to an eyedropper icon, . When you click on an object
with the eyedropper icon, the current color of the Coloring tool becomes the color of that
object. Then you can apply that object’s color to another object.

Use the Operating tool to operate objects. When you are in the operate mode, events
display on the right side of the tool bar. These event displays have a built-in delay to give
you time to see each event.

Using the User Interface Editor Popup Menus:

You can bring up a pop-up menu by clicking with the right mouse button on the User Interface
Editor Window. The type of pop-up menu that appears depends on the surface you click on.

• If you click on the User Interface Editor Window background, a pop-up menu appears
containing commands to create a panel or a menu bar.

• If you click on a panel background, a pop-up menu appears with each of the control types
you can create.

• If you click on a control, a pop-up menu appears with commands to generate or view the
callback function for the control.

Code Builder Overview

With the LabWindows/CVI CodeBuilder, you can create automatically complete C code that
compiles and runs based on a user interface (.uir) file you are creating or editing. By choosing
certain options presented to you in the Code menu, you can produce skeleton code. Skeleton
code is syntactically and programmatically correct code that compiles and runs before you have
typed a single line of code. With the CodeBuilder feature, you save the time of typing in
standard code included in every program, eliminate syntax and typing errors, and maintain an
organized source code file with a consistent programming style. Because a CodeBuilder program
compiles and runs immediately, you can develop and test the project you create, concentrating
on one function at a time.

When you choose Code » Generate » All Code, LabWindows/CVI places the #include
statements, variable declarations, callback function skeletons, and main function in the source
code file you specify as the target file. Each function skeleton contains a switch construct with a
case statement for every default event you specify. You can set default events for control
callback functions and panel callback functions by choosing Code » Preferences. Although

Chapter 2 User Interface Editor Reference

© National Instruments Corporation 2-3 LabWindows/CVI User Interface Reference

skeleton code runs, you must customize it to implement the actions you want to take place in the
case of each event.

When you generate code for a specific control or panel callback function, LabWindows/CVI
places the skeleton code for that function in the target file in the same complete format as was
done for the Code » Generate » All Code command. However, this code might not run. In order
for a project to run, there must be a main function. If you lack the main function or any of the
callback functions defined in the .uir file, the code is incomplete.

It is a good idea to use the Code » Generate » All Code option first, to produce a running
project from the current state of the .uir file. Then, after adding panels, controls or menu
items to the .uir file, use the Generate Panel, Control Callbacks and Menu Callbacks
commands to make corresponding additions to the source file.

Also with CodeBuilder, you can take care of program termination for automatically generated
code. For a CodeBuilder program to terminate successfully, you must include a call to the
QuitUserInterface function. When you choose Code » Generate » All Code, the
Generate All Code dialog box prompts you to choose which callback functions terminate the
program. You can select one or more callback functions to ensure proper program termination.

User Interface Editor Menus

The User Interface Editor has a menu bar that contains the following options: File, Edit , Create,
View, Options, Window, and Help.

File Menu

The File menu is shown in the following figure.

Figure 2-2. The File Menu

User Interface Editor Reference Chapter 2

LabWindows/CVI User Interface Reference 2-4 © National Instruments Corporation

New, Open, Save, and Exit LabWindows/CVI Commands

The New, Open, Save, and Exit LabWindows/CVI commands in the User Interface Editor
menu bar work like New, Open, Save and Exit LabWindows/CVI commands in the Project
window. If you require more information, consult Chapter 3, Project Window, in the
LabWindows/CVI User Manual.

Save As and Close Commands

The Save As and Close commands work like Save and Close in common Windows applications.
It is assumed that you are familiar with these commands.

Save Copy As

The Save Copy As command writes the contents of the active window to disk using a user-
specified name, without changing the name of the active window. If you want to append a
different extension, type a new extension after the filename. If you want no extension to be
appended, enter only a period after the filename.

Save All

The Save All command saves all open files to disk.

Add File to Project

The Add File to Project command adds the .uir file in the current window to the project list.

Read Only

The Read Only command suppresses the editing capabilities in the current window.

Print

The Print command opens the Print dialog box which allows you to send the entire .uir file
or the visible screen area to a printer or a file. The Print dialog box also allows you to set print
preferences. The print preferences (attributes) are described in the Generating Hard Copy
Output section of Chapter 3, Programming with the User Interface Library.

Chapter 2 User Interface Editor Reference

© National Instruments Corporation 2-5 LabWindows/CVI User Interface Reference

Edit Menu

Items in this Edit menu are used for editing panels, controls, and menu bars. Figure 2-3 shows
the Edit menu.

Figure 2-3. The Edit Menu

Note: Undo and Redo are enabled when you perform an edit action. The Cut and Copy
commands are enabled when you select a control, and Paste is enabled when you place
an object in the Clipboard using the Cut or Copy command. If you select an edit
command while it is disabled, nothing happens.

Undo and Redo

The Undo command reverses your last edit action and the screen returns to its previous state.
Edit actions are stored on a stack so that you can undo a series of your edit actions. The stack
stores up to 100 edit actions and is set using the Preferences command in the Options menu.

The Redo command reverses your last Undo command, restoring the screen to its previous state.
Redo is helpful when you use the Undo command to reverse a series of your edit actions and
accidentally go too far. The Redo command is enabled only when your previous action was the
Undo command. Any action disables the Redo command.

Actions that can be undone and redone are dynamically displayed in the menu, for example,
when you move a control the menu presents the option Undo Move Control.

User Interface Editor Reference Chapter 2

LabWindows/CVI User Interface Reference 2-6 © National Instruments Corporation

Cut and Copy

The Cut and Copy commands put controls in the Clipboard. The Cut command removes the
selected control and places it in the Clipboard. The Copy command copies the selected control
and places it in the Clipboard, leaving the selected control in its original location. Controls you
cut or copy do not accumulate in the Clipboard. Every time you cut or copy a control it replaces
whatever was previously stored in the Clipboard.

To use the Cut or Copy commands, follow these steps.

1. Select the control you want to place in the Clipboard by clicking on the control or pressing
<Tab> until the control is highlighted. Select multiple controls by dragging the mouse over
the controls or <Shift>-clicking on the controls.

2. Select Cut or Copy from the Edit menu.

Paste

The Paste command inserts controls, panels, or text from the Clipboard. You can Paste an
object from the Clipboard as many times as you like. Controls or panels remain in the Clipboard
until you use Cut, Cut Panel, Copy, or Copy Panel again. The New and Open commands do
not erase the Clipboard.

Delete

The Delete command deletes selected controls without placing the controls in the Clipboard.
Because Delete does not place controls in Clipboard, you cannot restore the controls using the
Paste command.

Copy Panel and Cut Panel

The Copy Panel and Cut Panel commands put an entire panel in the Clipboard. The Cut Panel
command removes the selected panel and places it in the Clipboard. The Copy Panel command
copies the selected panel and places it in the Clipboard, leaving the selected panel in its original
location. Panels you cut or copy do not accumulate in the Clipboard. Every time you cut or
copy a panel it replaces whatever was previously stored in the Clipboard.

To use the Cut Panel or Copy Panel commands, follow these steps.

1. Select the panel you want to place in the Clipboard by clicking on the panel or pressing
<Shift-Ctrl> and one of the arrow keys (up, down, right, or left) until the panel is activated.

2. Select Cut Panel or Copy Panel from the Edit menu.

Chapter 2 User Interface Editor Reference

© National Instruments Corporation 2-7 LabWindows/CVI User Interface Reference

Menu Bars

The Menu Bars command brings up the Menu Bar List dialog box shown in the following
figure.

Figure 2-4. The Menu Bar List Dialog Box

The list contains all of the menu bars in the resource file, listed by constant prefix. The
following list describes the command buttons.

• Create brings up a new Edit Menu Bar dialog box (Figure 2-5). After a menu bar is created,
it is inserted below the current menu bar in the menu bar list.

• Edit brings up the Edit Menu Bar dialog box for the selected menu bar.

• Cut deletes the currently highlighted item in the menu bar list and copies it to the menu bar
clipboard.

• Copy copies the currently highlighted item in the menu bar list to the menu bar clipboard.

• Paste inserts the contents of the menu bar clipboard to the menu bar list. The menu bar is
inserted above the currently highlighted item in the menu bar list.

• Done closes the Menu Bar List dialog box.

User Interface Editor Reference Chapter 2

LabWindows/CVI User Interface Reference 2-8 © National Instruments Corporation

The Edit Menu Bar dialog box is shown in the following figure.

Figure 2-5. The Edit Menu Bar Dialog Box

The Edit Menu Bar dialog box presents the following options.

• The Menu Bar Constant Prefix is the resource ID for the menu bar. This resource ID is
passed to the LoadMenuBar function which loads the panel into memory. The Menu Bar
Constant Prefix is defined in the .h file when you save the .uir file. If you do not assign
a Menu Bar Constant Prefix, the User Interface Editor assigns one for you when you save
the .uir file.

• Item shows the name of the current menu, sub menu, or menu command. If you type two
underscores before any letter in the item, the user can select the item by pressing <Alt> and
the underlined letter.

• Constant Name is appended to the Menu Bar Constant Prefix to form the ID for the
current item. The ID is used in functions such as GetMenuBarAttribute and

Chapter 2 User Interface Editor Reference

© National Instruments Corporation 2-9 LabWindows/CVI User Interface Reference

SetMenuBarAttribute . The ID is also returned by GetUserEvent when an event is
generated by a menu command.

• Naming a Callback Function is optional. In this box you can type the name of the function
to be called when an event is generated by the current menu item.

• Modifier Key and Shortcut Key combine to form the hot key for the current item.

• Dimmed specifies whether or not the current item is initially dimmed.

• Checked specifies whether or not the current item initially has a check mark.

• Insert New Item inserts the next item above or below the currently selected item.

• Insert Separator inserts a separator (a line) above or below the currently selected item.

• The left hierarchy button, , moves the currently selected item up one level in
the sub menu hierarchy.

• The right hierarchy button, , moves the currently selected item down one level
in the sub menu hierarchy.

• View displays the current state of the menu bar and pull-down menus.

Panel

The Panel command brings up the Edit Panel dialog box. This dialog box has three sections
entitled Source Code Connection, Panel Attributes, and Quick Edit Window.

The Source Code Connection section of the Edit Panel dialog box is shown in the following
figure.

Figure 2-6. Source Code Connection

In the Constant Name box you type the resource ID for the panel. You pass this resource ID to
the LoadPanel function to load the panel into memory. The Constant Name is defined in the
.h file when you save the .uir file. If you do not assign a Constant Name, the User Interface
Editor will assign one when you save the .uir file.

User Interface Editor Reference Chapter 2

LabWindows/CVI User Interface Reference 2-10 © National Instruments Corporation

Naming a Callback Function is optional. In this box you can type the name of the function to
be called when an event is generated on the panel.

The Panel Settings sections of the Edit Panel dialog box appear in the following figure.

Figure 2-7. Panel Attributes

Note: The preceding figure shows settings and attributes available in the Windows version of
LabWindows/CVI. The Edit Panel dialog box in the UNIX version of
LabWindows/CVI lacks some items because that program cannot update some panel
attributes for parent panels.

The Programming with Panels section of Chapter 3, Programming with the User Interface
Library, describes panel attributes in detail.

The Quick Edit Window section of the Edit Panel dialog box appears in the following figure.

Figure 2-8. Quick Edit Window

Chapter 2 User Interface Editor Reference

© National Instruments Corporation 2-11 LabWindows/CVI User Interface Reference

From the Quick Edit Window, you can perform high level edits on the panel. The tools in the
tool bar operate like the tools in the main User Interface Editor window. For further
information, see the section User Interface Editor Overview, earlier in this chapter.

Control

The Control command brings up the dialog box for editing the selected control. You can also
double-click on a control to get this dialog box. The dialog box usually has five sections entitled
Source Code Connection, Control Settings, Control Appearance, Quick Edit Window, and Label
Appearance. The contents of the sections vary slightly depending on the control that is being
edited.

The Source Code Connection section of the control dialog box is shown in the following figure.

Figure 2-9. Source Code Connection

The User Interface Editor appends Constant Name to the panel resource ID to form the ID for
the control. The ID identifies the control in any control-specific functions such as
GetCtrlVal and SetCtrlAttribute . The ID will be defined in the .h file when you
save the .uir file. If you do not assign a Constant Name, the User Interface Editor will assign
one for you when you save the .uir file.

Naming a Callback Function is optional. In this box you can type the name of the function to
be called when an event message is generated on the panel.

User Interface Editor Reference Chapter 2

LabWindows/CVI User Interface Reference 2-12 © National Instruments Corporation

The Control Settings section of the dialog box senses the type of control that is being edited. It
contains the data-specific attributes for the control. The Control Settings section for the Numeric
control is shown in the following figure.

Figure 2-10. Control Settings for a Numeric Control

Rings and list boxes have a Label/Value Pairs button in the Control Settings section. This
button activates the Edit Label/Value Pairs dialog box shown in the following figure.

Figure 2-11. The Edit Label/Value Pairs Dialog Box

Chapter 2 User Interface Editor Reference

© National Instruments Corporation 2-13 LabWindows/CVI User Interface Reference

Use the Edit Label/Value Pairs dialog box to create and edit the contents of ring and list box
controls. Use the list control functions in the User Interface Library to control rings and list
boxes.

The Control Appearance section of the dialog box senses the type of control that is being edited.
It contains attributes pertaining to the physical appearance of the control. The Control
Appearance section for the Numeric control appears in the following figure.

Figure 2-12. Control Appearance for a Numeric Control

The Label Appearance section of the dialog box contains attributes pertaining to the physical
appearance of the control label. The Label Appearance section for the Numeric control is shown
in the following figure.

Figure 2-13. Label Appearance for a Numeric Control

If you type a double underscore before any letter in the label, the user can select the control by
pressing <Alt> and the underlined letter, provided that no menu bar is accessible. This feature
helps you access controls on pop-up panels.

User Interface Editor Reference Chapter 2

LabWindows/CVI User Interface Reference 2-14 © National Instruments Corporation

The Quick Edit Window section of the Edit Control dialog box appears in the following figure.

Figure 2-14. Quick Edit Window

From the Quick Edit Window, you can perform high level edits on the control. The tools in the
tool bar operate like the tools in the main User Interface Editor window. The Quick Edit
Window also provides immediate feedback for any changes you make in other section of the
dialog box.

Simply stated, the dialog box of any control allows you to interactively set all of the attributes of
the control. The Programming with Controls section in Chapter 3, Programming with the User
Interface Library, describes these attributes in detail.

Tab Order

Each control on a panel has a position in the tab order. The tab order determines which control
becomes the next active control when the user presses <Tab> or <Shift-Tab>.

Chapter 2 User Interface Editor Reference

© National Instruments Corporation 2-15 LabWindows/CVI User Interface Reference

When you create a control, it is added to the end of the tab order. When you copy and paste a
control, the new control sits immediately before the source control in the tab order. Select Tab
Order from the Edit menu to put the panel into tab order edit mode as shown in the following
figure.

Figure 2-15. The Edit Tab Order Dialog Box

Click on a control with the special pointer cursor, , to change the tab position of a control to

the number in the Click to set to box. You can change the cursor to the special eyedropper

cursor, , by holding down the <Ctrl> key. This eyedropper cursor changes the number in the

Click to set to box to the current tab position associated with that control. Clicking on sets

the new tab order. Clicking on erases the new tab order and keeps the original tab order,

which appears in dim display to the right of the new tab order you enter.

Set Default Font

The Set Default Font command in the Edit menu makes the font of the currently selected
control the default control font. If the label is also selected (or is the only item selected), the font
of the label becomes the default label font. Newly created controls inherit the default fonts.

Apply Default Font

The Apply Default Font command in the Edit menu sets the font of the currently selected
control (and/or label) to the default control font (and/or default label font).

User Interface Editor Reference Chapter 2

LabWindows/CVI User Interface Reference 2-16 © National Instruments Corporation

Control Style

Use the Control Style command to change the style of the selected control. For example, you
can change a ring slide control to a ring knob control, and the label/value pairs remain intact.

Create Menu

Commands in the Create menu create panels, menu bars, and controls.

Figure 2-16 shows the Create menu.

Figure 2-16. The Create Menu

Panel

The Panel command places a new, untitled panel onto the User Interface Editor window. The
Edit Menu section of this chapter provides details on editing the panel.

Menu Bar…

The Menu Bar command brings up the Edit Menu Bar dialog box. The Edit Menu section of
this chapter provides details on editing the menu.

Controls

The remaining options in the Create menu allow you to create GUI controls. You can edit the
controls you create from the Edit menu. The Edit Menu section of this chapter provides details
on editing the menu.

Chapter 2 User Interface Editor Reference

© National Instruments Corporation 2-17 LabWindows/CVI User Interface Reference

View Menu

This section explains how to use the commands in the View menu in the User Interface Editor
window.

Figure 2-17 shows the View menu.

Figure 2-17. The View Menu

Find UIR Objects...

Use the Find UIR Objects command to locate objects in user interface resource file. When you
select this command, the Find UIR Objects dialog box opens, as shown in Figure 2-18.

Figure 2-18. Find UIR Objects Dialog Box

Select the type(s) of objects you want to search for by checking the appropriate check boxes in
the left column of the dialog box.

Select the search criterion from the Search By ring control. The choices are :

• Constant Prefix (valid for panels and menu bars)

User Interface Editor Reference Chapter 2

LabWindows/CVI User Interface Reference 2-18 © National Instruments Corporation

• Constant Name (valid for controls, menus, and menu items)

• Prefix + Constant Name (valid for all)

• Callback Function Name (valid for all except menu bars)

• Label (valid for all except menu bars)

Enter the text you want to search for into the string control. You can view a list of all the strings
in the file which match the current search criterion by clicking on the arrow to the right of the
string control, or by using the up and down arrow keys.

Use Wrap to continue searching from the beginning of the file once the end of the file has been
reached.

The Case Sensitive option finds only instances of the specified text which match exactly.

If you select Regular Expression, LabWindows/CVI treats certain characters in the search
string control as regular expression characters instead of literal characters. The regular
expression characters are described in Table 4-1 of the LabWindows/CVI User Manual.

Press the Find button to perform the search. If any user interface objects are matched, the dialog
box is replaced by the one shown in Figure 2-19.

Figure 2-19. Find UIR Objects Dialog Box After a Search Executes

This dialog box allows you to browse through the list of matches. As you come to each object,
its callback function name and label are shown, and the object is highlighted.

Find Prev searches backward for the previously matched object.

Find Next searches for the next matching object.

The Edit command terminates the search and brings up the Edit dialog box for the user interface
object currently highlighted.

The Stop command terminates the search.

Chapter 2 User Interface Editor Reference

© National Instruments Corporation 2-19 LabWindows/CVI User Interface Reference

Show/Hide Panels

The Show/Hide Panels command has a sub-menu, as shown in the following figure.

Figure 2-20. The Show/Hide Panel Sub-Menu

Use this submenu to select individual panels to view in the User Interface Editor, or to select
Show All Panels or Hide All Panels.

Bring Panel to Front command has a submenu that allows you to select a panel from a list to
bring to the front for editing.

Next Panel brings the next panel in the current .uir file to the front for editing.

Previous Panel brings the previous panel in the current .uir file to the front for editing.

Preview User Interface Header File

The Preview User Interface Header File command brings up a Source code window with a
preview of the header file that would be associated with the .uir file in the User Interface
Editor window if it were saved.

User Interface Editor Reference Chapter 2

LabWindows/CVI User Interface Reference 2-20 © National Instruments Corporation

Arrange Menu

This section explains how to use commands in the Arrange menu in the User Interface Editor
window. Figure 2-21 shows the Arrange menu.

Figure 2-21. The Arrange Menu

Alignment…

The Alignment command allows you to align controls on a panel. Use the mouse to select a
group of controls by dragging over them or you can <Shift-Click> on each item you want to
include in the group. Then you can select an alignment method from the submenu shown in the
following figure.

Figure 2-22. The Alignment Menu

 Left Edges vertically aligns the left edges of the selected controls to the left-most
control.

 Horizontal Centers vertically aligns the selected controls through their horizontal
centers.

 Right Edges vertically aligns the right edges of the selected controls to the right-most
control.

Chapter 2 User Interface Editor Reference

© National Instruments Corporation 2-21 LabWindows/CVI User Interface Reference

 Top Edges horizontally aligns the top edges of the selected controls to the upper-most
control.

 Vertical Centers horizontally aligns the selected controls through their vertical centers.

 Bottom Edges horizontally aligns the bottom edges of the selected controls to the lower-
most control.

Align Horizontal Centers

The Align Horizontal Centers command performs the same action as the Alignment command,
using the alignment option last selected in the Alignment command submenu.

Distribution...

The Distribution command allows you to distribute controls on a panel. Select a group of
controls by dragging the mouse over them or you can <Shift-Click> on each item you want to
include in the group. Then you can select a distribution method from the submenu as shown in
the following figure.

Figure 2-23. The Distribution Submenu

Top Edges sets equal vertical spacing between the top edges of the controls. The upper-
most and lower-most controls serve as anchor-points.

 Vertical Centers sets equal vertical spacing between the centers of the controls. The
upper-most and lower-most controls serve as anchor-points.

 Bottom Edges sets equal vertical spacing between the bottom edges of the controls. The
upper-most and lower-most controls serve as anchor-points.

 Vertical Gap sets equal vertical gap spacing between the controls. The upper-most and
lower-most controls serve as anchor-points.

User Interface Editor Reference Chapter 2

LabWindows/CVI User Interface Reference 2-22 © National Instruments Corporation

 Vertical Compress compresses the spacing of controls to remove any vertical gap
between the controls.

 Left Edges sets equal horizontal spacing between the left edges of the controls. The left-
most and right-most controls serve as anchor-points.

 Horizontal Centers sets equal horizontal spacing between the centers of the controls.
The left-most and right-most controls serve as anchor-points.

 Right Edges sets equal horizontal spacing between the right edges of the controls. The
left-most and right-most controls serve as anchor-points.

 Horizontal Gap sets equal horizontal gap spacing between the controls. The left-most
and right-most controls serve as anchor-points.

 Horizontal Compress compresses spacing of the controls to remove any horizontal gap
between the controls.

Distribute Vertical Centers

The Distribute command performs the same action as the Distribution command according to
the option last selected in the Distribution command submenu.

Control ZPlane Order

The Control Z-Plane Order option lets you sets the sequence in which controls are drawn.
Controls are always drawn in order, from the back to the front of the z-plane order. The Control
ZPlane Order submenus presents four commands:

• Move Forward moves the control one place forward in the z-plane order.

• Move Backward moves the control one place backward in the z-plane order.

• Move to Front moves the control to the front of the z-plane order so that it is drawn last.

• Move to Back moves the control to the back of the z-plane order so that it is drawn first.

Center Label

The Center Label command centers the label of the selected control.

Chapter 2 User Interface Editor Reference

© National Instruments Corporation 2-23 LabWindows/CVI User Interface Reference

Control Coordinates…

The Control Coordinates command invokes a dialog box allowing you to interactively set the
width, height, top, and bottom of all selected controls and labels.

The Code Menu

Use the commands in the Code menu to generate code automatically based on a (.uir) file you
are creating or editing. Figure 2-24 shows the Code menu.

Figure 2-24. The Code Menu

Set Target File…

Use the Set Target File command to specify to which file LabWindows/CVI generates code.
Selecting this command brings up the Set Target File dialog box, shown in Figure 2-25. By
default, LabWindows/CVI places the generated code in a new window, unless a source code
(.c) file is open. Then, that source file is the default target file. CodeBuilder uses the same
target file as the function panel target file, except when the function panel target file is the
Interactive Execution window.

Figure 2-25. The Set Target File Dialog Box

User Interface Editor Reference Chapter 2

LabWindows/CVI User Interface Reference 2-24 © National Instruments Corporation

To set a target file, select a file from the list of options in the Set Target File dialog box, and then
select OK . The options include all open source files and a new window.

Generate

The commands in the Generate menu produce code based on the .uir file. Figure 2-26 shows
the Generate menu. The code produced by the Generate menu uses the bracket styles specified
with the Bracket Styles command in the Source window’s Options menu.

Figure 2-26. The Generate Menu

Note: Panel Callback and Control Callbacks are enabled when you select any panel or
control for which you have specified a callback function name. All Callbacks is
enabled once you have created any object with a callback function name. Menu
Callbacks is enabled once you have created a menu bar that contains at least one item
with a callback function name.

When you generate code to accompany a .uir file, LabWindows/CVI places the skeleton code
in the target file. You must save the .uir file before you can generate any code based on that
file. When you save a .uir file, LabWindows/CVI generates a header file (a file with a .h
suffix) with the same name. This .h file and userint.h are included in the source file.

If you try to generate the same function more than once, the Generate Code dialog box appears.
Figure 2-27 shows the Generate Code dialog box. Each previously generated code fragment
appears highlighted. Choose an option in the Generate Code dialog box to replace the existing
function, insert a new function, or skip to the next generated function.

Figure 2-27. The Generate Code Dialog Box

Chapter 2 User Interface Editor Reference

© National Instruments Corporation 2-25 LabWindows/CVI User Interface Reference

All Code…

Use the All Code command to generate code to accompany the .uir file. Selecting Code »
Generate » All Code brings up the Generate All Code dialog box, shown in Figure 2-28. This
dialog box displays a checklist and prompts you to choose the panel(s) the main function loads
and displays at run time. LabWindows/CVI automatically assigns a default panel variable name
for each panel in the .uir file.

Figure 2-28. The Generate All Code Dialog Box

The Generate All Code dialog box also prompts you to choose the callback function(s) that
terminate the program. For a CodeBuilder program to terminate successfully, you must include a
call to the QuitUserInterface function.

Note: Callback functions associated with close controls are automatically checked in the
Program Termination section of the Generate All Code dialog box. You can specify
close controls in the Edit Panel dialog box.

To automatically generate all code, select the panels you want to load and display in the user
interface. Also select the callback function(s) you want to terminate the program, and then select
OK .

User Interface Editor Reference Chapter 2

LabWindows/CVI User Interface Reference 2-26 © National Instruments Corporation

When you choose Code » Generate » All Code, LabWindows/CVI produces the #include
statements, the variable declarations, the function skeletons and the main function, and places
them in the target file. The callback function you selected to terminate program execution
includes a call to the User Interface Library QuitUserInterface function.

Unless you have selected the Always Append Code to End option, LabWindows/CVI places
the skeleton code for each callback function at the cursor position in the target file. If the cursor
is inside an existing function, LabWindows/CVI repositions the cursor at the end of that function
before inserting the new function. CodeBuilder places all functions of one type (panel, control,
or menu) together in the source file. Any panel callbacks are placed first in the source file,
control callbacks are placed next and menu callbacks are placed last. See the Preferences section
in this chapter for more details on specifying the location of generated code.

Function skeletons for control and panel callbacks include the complete prototype, the proper
syntax, a return value and a switch construct containing a case for each default control or panel
event. Function skeletons for menu callbacks include the complete prototype and open and close
brackets. You can set the default events by selecting Code » Preferences. See the Preferences
section for more details. You can set the location of the open and close brackets by selecting the
Bracket Style command from the Options menu of a Source window.

Main Function…

Use the Main Function command to generate code for the main function, and write it to the
target file. Selecting Code » Generate » Main Function option brings up the Generate Main
Function dialog box, shown in Figure 2-29. This dialog box prompts you to choose the panel the
main function loads and displays at run time. LabWindows/CVI automatically assigns a default
panel variable name for each panel in the .uir file.

Figure 2-29. The Generate Main Function Dialog Box

Chapter 2 User Interface Editor Reference

© National Instruments Corporation 2-27 LabWindows/CVI User Interface Reference

Note: If you previously selected Code » Generate » All Code command, you do not need to
execute this command as well. Only use this command when you want to replace the
main callback function to add or change the panels to be loaded at run time.

To automatically generate code for the main function, select the panel(s) you want to load and
display in the user interface, and then select OK .

When you choose Code » Generate » Main Function, LabWindows/CVI produces the
#include statements, the variable declarations, and the main callback function, and places
them in the target file.

Note: If the source file contains only the main function and the #include statements, and
you have not yet created the appropriate callback functions, you might get an error
when trying to run the project. When the main function calls LoadPanel ,
LabWindows/CVI generates a non-fatal error for each callback function it cannot find
in the source file.

The checkbox, Generate WinMain() instead of main(), enables you to use WinMain instead
of main for your main program. In LabWindows/CVI, you can use either function as your
program entry point. When linking your application in an external compiler, it is easier to use
WinMain .

If your project target is a DLL, neither WinMain or main are generated. Instead, a DLLMain
function is generated. The bulk of the User Interface function calls, however, are generated in a
function call InitUIForDLL . You can call InitUIForDLL in your DLL at the point you
want to load and display panels.

When you link your executable or DLL in an external compiler, you need to include a call to the
InitCVIRTE function in WinMain , main , or DLLMain (or DLLEntryPoint for Borland
C/C++). In a DLL, you also need to include a call to CloseCVIRTE . See the Calling
InitCVIRTE and CloseCVIRTE section in Chapter 3, Windows 95 and NT Compiler/Linker
Issues, in the LabWindows/CVI Programmer Reference Manual.

CodeBuilder automatically generates the necessary calls to InitCVIRTE and CloseCVIRTE
in your WinMain , main , or DLLMain function. It also automatically generates a #include
statement for the cvirte.h file.

All Callbacks

Use the All Callbacks command to generate code for all the callback functions, and write them
to the target file.

When you select Code » Generate » All Callbacks, LabWindows/CVI produces the
#include statements and the callback function skeletons, and places them in the target file.

User Interface Editor Reference Chapter 2

LabWindows/CVI User Interface Reference 2-28 © National Instruments Corporation

Panel Callback

Use the Panel Callback command to generate code for a panel connected to a callback function.
Before you can choose Code » Generate » Panel Callback, you must activate a panel.

When you select Code » Generate » Panel Callback, LabWindows/CVI produces the
#include statements and the function skeleton for the active panel, and places them in the
target file.

Control Callbacks

Use the Control Callbacks command to generate code for a control connected to a callback
function. Before you can choose Generate » Control, you must select at least one control.

When you select Code » Generate » Control Callbacks, LabWindows/CVI produces the
#include statements and the function skeleton for each selected control, and places them in
the target file.

You can also generate a control callback function skeleton by clicking on the control with the
right mouse button, and selecting the Generate Control Callback command from the pop-up
menu.

Menu Callbacks…

Use the Menu Callbacks command to generate code for menus and menu items connected to
callback functions.

Selecting Code » Generate » Menu Callbacks brings up the Select Menu Bar Objects dialog
box. Select the menu bar objects for which you want to generate callbacks, and then select OK .

When you select OK , LabWindows/CVI produces the #include statements, the function
prototypes and the opening and closing brackets for each callback function. No switch construct
or case statements are produced because the usual default events do not apply to Menu Callback
functions. You must add the code to implement the actions you want to take place when a menu
bar item is selected.

View

Use the View command to look at code for a given callback function. Figure 2-30 shows the
View menu.

Chapter 2 User Interface Editor Reference

© National Instruments Corporation 2-29 LabWindows/CVI User Interface Reference

Figure 2-30. The View Menu

To view the code for a function from the .uir file, select a panel or control and then select
View » Panel Callback or View » Control Callback. The source file containing the callback
function appears with the function name highlighted. You can also view the code for a control
callback function by clicking on the control with the right mouse button, and selecting the View
Control Callback command from the pop-up menu.

When you choose the View command for a callback function, LabWindows/CVI searches for
that function in all open Source windows and in all the source files in the project, and in any
other open source files. If the function is found in a closed project file, that file is opened
automatically.

The View command is useful because the callback functions for one user interface can be in
several different files, and scrolling the source code is not efficient. With the View command,
you can move instantly from the user interface file to an object’s callback function whether the
source file is open or closed.

When you are finished reviewing the code, you can return instantly to the .uir file from the
source file. To return to the .uir file, place the cursor on the callback function name or
constant name of the User Interface object you want to go to, and select the Find UI Object
command from the View menu in the Source window.

Note: You cannot use the View command for Menu Callback functions.

Preferences

Use the Preferences command to change the default settings for case statements generated for
control callback functions and panel callback functions or to specify the target file location for
generated code. Figure 2-31 shows the Preferences submenu.

Figure 2-31. The Preferences Menu

User Interface Editor Reference Chapter 2

LabWindows/CVI User Interface Reference 2-30 © National Instruments Corporation

Default Panel Events… and Default Control Events…

Use the Default Panel Events or Default Control Events commands to select which events
LabWindows/CVI places into the switch construct of the code for panel or control callback
functions, respectively. You can choose from several events, and you can choose to add the
“default:” switch case. Selecting Code » Preferences » Default Panel Events brings up the
Panel Callback Events dialog box. Selecting Code » Preferences » Default Control Events
brings up the Control Callback Events dialog box.

To set the Default Panel Events or Default Control Events, select the events you want to be
included in the code as case statements, and then select OK . For each option you choose,
LabWindows/CVI includes a case statement that corresponds to this option in the source code.

Note: Default control events are ignored for Timer Control Callbacks, whose only event
cases are EVENT_TIMER_TICK and EVENT_DISCARD.

Always Append Code to End

When this option is selected, LabWindows/CVI places the skeleton code for each callback
function at the end of the target file. When this option is not selected, newly generated code is
placed at the current position of the cursor in the target file.

Run Menu

The Run Menu contains a subset of the commands that appear in the Run Menu of the source
window. The commands are:

Run Project Step Into Break at First Statement
Continue Finish Function Breakpoints
Step Over Terminate Execution

Refer to the LabWindows/CVI User Manual, Chapter 4, Source, Interactive Execution, and
Standard Input/Output Windows, in the Run Menu section for descriptions of each of these
commands.

Library Menu

The Library menu for the User Interface Editor Window works the same way as the Library
menu in the Project Window. See the LabWindows/CVI User Manual, Chapter 3, Project
Window, for information on the Library menu.

Chapter 2 User Interface Editor Reference

© National Instruments Corporation 2-31 LabWindows/CVI User Interface Reference

Window Menu

The Window menu in User Interface Editor windows behaves like the Window menu in the
Project window. See the LabWindows/CVI User Manual, Chapter 3, Project Window, for
information on the Window menu.

Options Menu

This section explains how to use the commands in the Options menu. Figure 2-32 shows the
Options menu.

Figure 2-32. The Options Menu

Operate Visible Panels

Operate Visible Panels allows you to operate the visible panels as you would in an application

program. This command has the same effect as clicking on the icon. When you finish
operating the panel, select Operate Visible Panels again to return to edit mode.

Next Tool

The Next Tool command in the Options menu cycles the User Interface Editor through three of

its four modes: editing mode , labeling mode , and coloring mode .

User Interface Editor Reference Chapter 2

LabWindows/CVI User Interface Reference 2-32 © National Instruments Corporation

Preferences…

Selecting Preferences brings up the User Interface Editor Preferences dialog box, as shown in
the following figure.

Figure 2-33. The User Interface Preferences Dialog Box

Undo Preferences

Use the Undo Preferences section of the User Interface Editor Preferences dialog box to set the
number of undo-able actions for each file. Select the Purge undo actions when saving file
check box if you want the Undo buffer to empty every time you save a file.

Color Preferences

Use the Color Preferences section of the User Interface Editor Preferences dialog box to set the
default editor and panel colors.

Constant Name Assignment

Constant names link user GUI objects and your program. The User Interface Editor writes all
assigned constant names to a header file corresponding to the loaded .uir file.

Chapter 2 User Interface Editor Reference

© National Instruments Corporation 2-33 LabWindows/CVI User Interface Reference

The Constant Name Assignment section of the User Interface Editor Preferences dialog box
allows you to set preferences for constant name assignment, when you do not assign constant
names yourself.

When the "Immediately assign constant names for new objects" option is in effect, the User
Interface Editor generates constant names for each object as you create it. For panels and
controls, the generated constant name appears in the edit dialog the first time you bring it up. For
menu bars, the constant names are assigned only when you exit the menu bar editor. In all cases,
you can freely modify the generated constant names.

It is recommended that you leave the "Immediately assign constant names for new objects"
option in effect. This makes it easier for you to use the other LabWindows/CVI features that
have been designed to help you write your program to operate your user interface.

Notice that when the "Immediately assign constant names for new objects" option is enabled, the
"Assign constant names from user-defined control labels when possible" option has no effect.
That is because the control labels have not been changed from the default "Untitled Control"
label at the time the constant name is generated. Instead, the constant name is based on the
control type.

If you choose to disable the "Immediately assign constant names for new objects" option, it is
recommended that you enable the "Fill in missing constant names when saving" option.

Assign Missing Constants…

The Assign Missing Constants command assigns constant names to all of the objects in the User
Interface Editor Window that currently do not have constant names. A confirmation dialog
appears showing the number of items that have no constant names.

Save In Text Format

The Save In Text Format command saves the contents of the User Interface Editor Window in a
ASCII text format. A dialog box appears prompting you to enter the pathname under which to
save the text file. The extension .tui is recommended for such files. Do NOT use the .uir
extension.

The ASCII text file contains descriptions of all the objects in the User Interface Editor Window.

Note: If you have a large number of objects in your User Interface Editor Window, this
command may take a significant amount of time to complete (for example, 3 minutes).

User Interface Editor Reference Chapter 2

LabWindows/CVI User Interface Reference 2-34 © National Instruments Corporation

Load From Text Format…

The Load From Text Format command loads into a new User Interface Editor Window the
objects defined in a file saved using the Save In Text Format command. A dialog box appears
prompting you for the pathname of the file.

© National Instruments Corporation 3-1 LabWindows/CVI User Interface Reference

Chapter 3
Programming with the User Interface Library

This chapter describes how to use the User Interface Library in the application programs you
create.

Developing and Running a Program

Although there are many ways to develop your projects in LabWindows/CVI, you may want to
use the following development pattern.

1. Open a User Interface Editor window to design a user interface for your program.

2. Assign constant names and/or callback functions to each control on your GUI.

3. Save your GUI as a user interface (.uir) file (the program automatically generates a
corresponding .h include file). If you use CodeBuilder, LabWindows/CVI creates skeleton
code for your source file. See the CodeBuilder Overview section of Chapter 2, User
Interface Editor Reference, for more information.

4. Open a Source window to develop your C Language program to control the GUI.

5. Add the source code (.c), include (.h), and user interface (.uir) files to your project list
and save as a project (.prj) file.

If you are editing the program and .uir file concurrently, you must recompile your program
every time you save the .uir file. This is required because the contents of the include file
generated by the User Interface Editor might change. You can make recompiling automatic by
enabling the Track Include File Dependencies command in the Options menu of the Project
Window. If the .uir files and image files do not contain absolute paths in the LoadMenuBar ,
LoadPanel , or DisplayImageFile functions, the User Interface Library will search for
them in the following order.

1. The directory associated with the .uir or image file in the project.

2. The directory containing the project.

It is good practice to add your .uir and image files to the project list or save the resource files
and image files in the directory that contains your project file. If you use the latter approach,
your program should not contain absolute path names in the LoadMenuBar , LoadPanel or
DisplayImageFile functions.

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-2 © National Instruments Corporation

Creating a Graphical User Interface

As discussed in the Introduction to the Graphical User Interface section of Chapter 1, User
Interface Concepts, there are two ways to create Graphical User Interface (GUI) objects for your
application program. You can create objects programmatically using function calls or
interactively using the User Interface Editor.

Once you create a GUI, you can control the objects in two ways. You can assign callback
functions to GUI objects. When any type of event is generated on a panel, menu, or control, the
appropriate callback function executes. Alternatively, you can use an event loop that includes a
call to GetUserEvent . When a commit event is generated, GetUserEvent returns the
appropriate panel, menu, or control identifier, and the program conditionally executes portions of
code. You can use either technique or you can combine them for added flexibility.

Naturally, one of your most important tasks in designing a GUI is to assign callback functions
and IDs to every interface object.

If you design your GUI in the User Interface Editor...

You assign callback functions and unique IDs (constant names) to objects and LabWindows/CVI
automatically saves their declarations in an include file whenever you save the resource file.
You must include this file in your application program using the #include preprocessor
command. The #include directive allows the program to reference the resource IDs and
callback functions for the user interface objects. Panel and menu bar handles are assigned at run
time when you use the LoadPanel and LoadMenuBar functions.

Note: With the LabWindows/CVI Code Builder, you can create automatically complete C
code that compiles and runs based on a user interface (.uir) file you are creating or
editing. See the Code Builder Overview section of Chapter 2, User Interface Editor
Reference, for more information.

If you design your GUI programmatically...

Assign panel and menu bar handles with the NewPanel , and NewMenuBar functions. Assign
IDs using the NewCtrl , NewMenu, NewSubMenu, and NewMenuItem functions. Assign
callback functions through functions such as InstallPanelCallback ,
InstallCtrlCallback , and InstallMenuCallback .

Assigning Constant Names in the User Interface Editor

The following rules apply when you use the User Interface Editor to assign constant names to
panels and controls.

• You must assign a constant prefix to the panel. Panel constant prefixes can be up to 10
characters long and must be unique with respect to all other panel and menu bar constant

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-3 LabWindows/CVI User Interface Reference

prefixes in the same resource file. Your application program references the prefix when it
loads the panel from the resource file.

• You may assign a constant name to each control. Control constant names can be up to 20
characters long and must be unique with respect to all other control constants defined for the
same panel. The name is concatenated to the panel prefix to generate a unique constant
name. For example, if the panel prefix is SCOPE and the control prefix is POWER, the
complete constant name would be SCOPE_POWER. The application program uses the
complete constant name to reference the control.

The following rules apply when assigning constant names to menu bars in the User Interface
Editor.

• You must assign a constant prefix to the menu bar. The prefix can be up to 10 characters
long and must be unique with respect to all other panel and menu bar prefixes that you store
together in a resource file. Your application program references the prefix to load the menu
bar from the resource file.

• You may assign a constant prefix to each menu. The prefix can be up to 10 characters long
and must be unique with respect to all other menu prefixes in the same menu bar. The
program concatenates the constant prefix and the menu bar prefix to generate a unique
constant name. For example, if the menu bar prefix is MAIN and the menu prefix is FILE ,
the complete constant name is MAIN_FILE . Your application program uses the complete
constant name to reference the menu.

• You may assign a constant name to each menu item. Menu item constant names can be up to
10 characters long and must be unique with respect to all other menu item constants in the
same menu. The program concatenates the menu bar prefix and the menu prefix to generate
a unique constant name. For example, if the menu bar prefix is MAIN, the menu prefix is
FILE , and the menu item name is LOAD, the complete constant name is
MAIN_FILE_LOAD. Your application program uses the complete constant name to
reference the menu item.

The User Interface Editor automatically inserts the constant name separator (_) when it
generates the include file.

Note: When you use submenus, all identifiers starting with the menu bar prefix are
concatenated. Choose brief identifiers so that constant names remain as short as
possible.

Controlling a Graphical User Interface

Certain user operations on the GUI, such as selecting a menu item on the GUI or typing a value,
are called events. The User Interface Library provides the link between events and the code files
in your project.

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-4 © National Instruments Corporation

User Interface Events

Your program can recognize events and execute the code in response to them. Table 3-1 shows
all of the events that are generated from the GUI and the information that is passed to the
program at event time.

Table 3-1. User Interface Events

Event Type Event on the GUI Information Passed to Program

control and
menu event

EVENT_COMMIT Which panel or menu bar, which control or
menu item.

control event EVENT_VAL_CHANGED Which panel, which control.

control and
panel event

EVENT_LEFT_CLICK Which panel, which control, mouse y & x
coordinates.

EVENT_LEFT_DOUBLE_CLICK Which panel, which control, mouse y & x
coordinates.

EVENT_RIGHT_CLICK Which panel, which control, mouse y & x
coordinates.

EVENT_RIGHT_DOUBLE_CLICKWhich panel, which control, mouse y & x
coordinates.

EVENT_KEYPRESS Which panel, which control, key code, pointer to
key code.

EVENT_GOT_FOCUS Which panel, which control

EVENT_LOST_FOCUS Which panel, which control.

EVENT_DISCARD Which panel, which control.

timer control
event

EVENT_TIMER_TICK Pointer to the current time (double *),
pointer to time since the callback last received
an EVENT_TIMER_TICK (double *).

panel event EVENT_CLOSE Which panel.

EVENT_PANEL_SIZE Which panel.

EVENT_PANEL_MOVE Which panel.

main
EVENT_IDLE Obsolete. Use timer controls instead.

callback
event

EVENT_END_TASK Microsoft Windows only. Received when
Windows wants to quit. (Return a non-zero
value to abort the termination.)

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-5 LabWindows/CVI User Interface Reference

Using Callback Functions to Respond to User Interface Events

Callback functions respond to all events listed in Table 3-1. Callback functions have prototypes
(found in userint.h) for panels, menu bars, controls, or the main callback. When the user
generates an event on a particular user interface object, the appropriate callback function
executes. Idle events and end-task events are passed to the main callback function only. (See the
discussion of InstallMainCallback in the Special User Interface Functions section of
Chapter 3, Programming With the User Interface Library. Event information is passed
automatically from the GUI to your program through callback functions whenever they are
called. For example, callback functions are passed the user interface event type that occurred
(such as EVENT_LEFT_CLICK), and some additional information concerning that event (such
as the x and y-coordinates of the mouse cursor when the click occurred). You, as the developer
of these callback functions, are free to use this information as needed when responding to events.

Callback functions are introduced in the tutorial in the Getting Started with LabWindows/CVI
manual. Many of the sample programs described in Chapter 5, LabWindows/CVI Sample
Programs, illustrate callback functions, too. The following diagram and example pseudo-code
illustrates the callback function concept.

Figure 3-1. The Callback Function Concept

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-6 © National Instruments Corporation

panel_handle = LoadPanel(...)
DisplayPanel(panel_handle, ...);
menu_handle = LoadMenuBar(...);
RunUserInterface()

int CVICALLBACK PanelResponse (int handle, int event, void *callbackdata,
int eventdata1, int eventdata2)

{
switch (event) {

case EVENT_PANEL_SIZE :
. /* Code that responds to the panel */
. /* being resized */
break;

case EVENT_PANEL_MOVE :
. /* Code that responds to the panel */
. /* being moved */
break;

case EVENT_KEYPRESS :
. /* Code that responds to a keypress */
. /* eventdata1 & eventdata2 contain */
. /* keycode information */
break;

}
return(0);

}

int CVICALLBACK ControlResponse (int handle, int control, int event,
void *callbackdata, int eventdata1,
int eventdata2)

{
if (control == PANEL_CONTROL1) {

switch (event) {
case EVENT_RIGHT_CLICK :
. /* Code that responds to a right */
. /* click on CONTROL1 */

break;
case EVENT_VAL_CHANGED :
. /* Code that responds to a value */
. /* change on CONTROL1 */

break;
case EVENT_COMMIT :
. /* Code that responds to a commit */
. /* event on CONTROL1 */

break;
}

}

if (control == PANEL_CONTROL2) {
switch (event) {

case EVENT_RIGHT_CLICK :
. /* Code that responds to a right */
. /* click on CONTROL2 */

break;
case EVENT_COMMIT :
. /* Code that responds to a commit */
. /* event on CONTROL2 */

break;
}

}
return(0);

}

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-7 LabWindows/CVI User Interface Reference

int CVICALLBACK MenuBarResponse (int menubar, int menuitem,
void *callbackdata, int panel)

{
switch (menuitem) {

case MENUBAR_MENU1_ITEM1:
. /* Code that responds to ITEM1 in */
. /* MENU1 of the menu bar. */
break;

case MENUBAR_MENU1_ITEM2:
. /* Code that responds to ITEM2 in */
. /* MENU1 of the menu bar. */
break;

}

return(0);
}

Note: If you assign callback functions to your GUI objects using the User Interface Editor,
these functions are automatically installed through LoadPanel and LoadMenuBar .
Otherwise, you will need to install them programatically through the Install functions
(InstallPanelCallback , InstallCtrlCallback , InstallMenuCallback , and
others).

Note: Do not call the longjmp function from within a callback function.

The CVICALLBACK macro should precede the function name in the declarations and function
headers for all user interface callbacks. This ensures that the functions are treated by the
compiler as cdecl (or stack-based in WATCOM), even when the default calling convention is
stdcall . CVICALLBACK is defined in cvidefs.h , which is included by userint.h .
The CVICALLBACK macro is included where necessary in the header files generated by the
User Interface Editor and in source code generated by CodeBuilder.

For detailed information about the user interface callback functions, see the descriptions of
PanelCallbackPtr , CtrlCallbackPtr , MenuCallbackPtr ,
MenuDimmerCallbackPtr , MainCallbackPtr , and DeferredCallbackPtr in
Chapter 4, User Interface Library Reference.

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-8 © National Instruments Corporation

Using GetUserEvent to Respond to User Interface Events

The GetUserEvent function returns only commit events (with the exception of
programmer-defined events posted through QueueUserEvent). Commit events are generated
when the user of the GUI actually commits to an operation such as making a menu selection or
typing in a menu selection or typing in a number and pressing <Enter>. The following figure
illustrates the event-loop concept of GetUserEvent .

Figure 3-2. The Event Loop Concept

A typical program could use a GetUserEvent loop with the following pseudocode algorithm.

panel_handle = LoadPanel(...);
DisplayPanel(panel_handle,...);
menu_handle = LoadMenuBar(...);

while (GetUserEvent(WAIT, &handle, &control)) {
if (handle == PANEL) {

switch (control) {
case PANEL_CONTROL1:

. /* Code that responds to CONTROL1 on */

. /* the panel. */
break;

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-9 LabWindows/CVI User Interface Reference

case PANEL_CONTROL2:
. /* Code that responds to CONTROL2 on */
. /* the panel. */
break;

}
}
if (handle == MENUBAR) {

switch (control) {
case MENUBAR_MENU1_ITEM1:

. /* Code that responds to ITEM1 in */

. /* MENU1 of the menu bar. */
break;

case MENUBAR_MENU1_ITEM2:
. /* Code that responds to ITEM2 in */
. /* MENU1 of the menu bar. */
break;

}
}

You should read the remainder of this chapter and Chapter 3, Programming with the User
Interface Library, before attempting to develop a program with the User Interface Library. You
should also examine and execute the example programs outlined in Chapter 5, LabWindows/CVI
Sample Programs. These examples are designed to illustrate the concepts presented in
Chapters 1 and 3.

Programming with Panels

This section describes how you can use the User Interface Library functions to control the
elements of user interface panels.

Panel Functions

Use LoadPanel to load a panel from a resource file created in the User Interface Editor into
memory. When LoadPanel loads a panel from a resource file, it references the panel using the
constant name that you assigned to the panel in the User Interface Editor. LoadPanel returns a
handle that you use in subsequent User Interface Library functions to reference the panel. Use
the first parameter of LoadPanel to specify whether the panel loads as a top-level window or
as a child of another (parent) window. Loading a panel does not automatically display the panel.

Use NewPanel to create a new panel during program execution. NewPanel returns a handle
that you use in subsequent User Interface Library functions to reference the panel. Use the first
parameter of NewPanel to specify whether the panel is created as a top-level window or as a
child of another (parent) window. You also specify the name, position, and size of the panel
through parameters to NewPanel . Creating a new panel using NewPanel does not
automatically display the panel.

Use DuplicatePanel to create a new panel that is a duplicate of a panel loaded by
LoadPanel or created by NewPanel . DuplicatePanel returns a handle you use to
reference the panel in subsequent operations. Use the first parameter of DuplicatePanel to
specify whether the panel is created as a top-level window or as a child of another (parent)

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-10 © National Instruments Corporation

window. You also specify the name and position of the panel through parameters to
DuplicatePanel . Creating a new panel using DuplicatePanel does not automatically
display the panel.

Use DisplayPanel to display a panel. When a panel is visible and enabled, the user can
operate it. Calling DisplayPanel when a panel is already displayed causes the panel to be
completely redrawn.

Use HidePanel to hide a panel. When a panel is hidden, it can still be updated. For example,
you can add plots to a graph control on a hidden panel. When the panel is redisplayed, it will
show the new plots. A hidden panel cannot generate events.

Use DefaultPanel to restore all panel controls to their default values. If the panel is visible,
it is updated to reflect the new control values. You assign default values to controls in the User
Interface Editor or through the SetCtrlAttribute function using ATTR_DFLT_VALUE.

Use GetActivePanel to obtain the handle of the currently active panel.

Use SetActivePanel to make a particular panel active when multiple panels are visible.

Use GetPanelAttribute to obtain a particular attribute of a panel. The Panel Attributes
section of this chapter lists panel attributes.

Use SetPanelAttribute to set a particular attribute of a panel. The Panel Attributes
section of this chapter lists panel attributes.

Use SetPanelPos to change the position of a panel on the screen. If the panel is visible, it is
redrawn in its new position.

Use SavePanelState to save the state of a panel to a file on disk. SavePanelState
saves the state of every control, including the plot data in graphs and strip charts and the current
items in selection lists.

Use RecallPanelState to recall a state file from disk to a panel. Every control on the panel
is set to the value stored in the state file. You must recall the state file to the same panel from
which it was saved.

Use DiscardPanel to remove a panel from memory. If the panel is visible, it is removed
from the screen.

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-11 LabWindows/CVI User Interface Reference

Role of Child Panels

You can configure the LoadPanel function so that panels appear within other panels in your
user interface. When you do this, the principal panel is called the parent panel; panels within are
child panels. Child panels can appear within other child panels, too.

A child panel helps developers control the appearance of the user interface. Users cannot drag a
child panel outside its parent panel. And if users shrink a parent panel, a child panel may be
partially or completely hidden in the shrunken panel view.

Processing Panel Events

If you need to process events such as mouse clicks, panel moves, or panel sizing, you must
assign a callback function to the panel. When an event is generated on the panel, the panel
callback function executes. To process events generated on the controls of the panel, see the
Programming with Controls section of this chapter.

If you create your panel in the User Interface Editor, you can assign a callback function name to
the panel from within the editor. When you load the panel with LoadPanel ,
LabWindows/CVI automatically installs your callback function and calls it whenever an event is
generated on the panel.

If you create your panel programmatically using the NewPanel function, you can install a
callback function for the panel using InstallPanelCallback . Your callback function is
called whenever an event is generated on the panel. You should use the PanelCallbackPtr
typed from userint.h as a model to declare your panel callback function.

Callbacks must be initiated through a call to RunUserInterface or through a
GetUserEvent loop.

Panel Attributes

Table 3-2 lists panel attributes that you can retrieve or change through GetPanelAttribute
and SetPanelAttribute .

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-12 © National Instruments Corporation

Table 3-2. Panel Attributes

Name Type Description

ATTR_ACTIVE int Indicates whether the panel or one of its child
panels is the active panel.
(GetPanelAttribute only.)

ATTR_ACTIVATE_WHEN_CLICKED_
ON

int 1 = child panel is made the active panel when
clicked on
0 = child panel is not made the active panel
when clicked on

ATTR_BACKCOLOR int RGB valueSee discussion following this
table.

ATTR_CALLBACK_DATA void * A pointer to user data that is passed to the
panel callback function

ATTR_CALLBACK_FUNCTION_
POINTER

void * A pointer to the callback function for the
panel.

ATTR_CALLBACK_NAME char * The name of the callback function associated
with the panel. (GetPanelAttribute
only.)

ATTR_CALLBACK_NAME_LENGTH int The number of characters in the name of the
panel callback. (GetPanelAttribute
only.)

ATTR_CAN_MAXIMIZE int 1 = you can maximize the top-level panel
0 = you cannot maximize the top-level panel
(Windows only)

ATTR_CAN_MINIMIZE int 1 = you can minimize the top-level panel
0 = you cannot minimize the top-level panel
(Windows only)

ATTR_CLOSE_CTRL int control ID that receives commit events when a
user selects the Close command in the System
Menu (Top-level panels only.)

ATTR_CLOSE_ITEM_VISIBLE int Specify whether the panel Close item is
available in the top-level panel.
0 = Dimmed Close Item
1 = Enable Close Item
(Windows only)

(continues)

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-13 LabWindows/CVI User Interface Reference

Table 3-2. Panel Attributes (Continued)

Name Type Description

ATTR_CONFORM_TO_SYSTEM int Specifies whether the panel and its controls
use the system colors. Subsequent new
controls also use the system colors. (This is
useful only on Windows 95. Other platforms
always use panel gray and black as the system
colors.)

ATTR_CONSTANT_NAME char * The constant name assigned to the panel in the
User Interface Editor.
(GetPanelAttribute only.)

ATTR_CONSTANT_NAME_LENGTH int The number of characters in the constant name
of the panel. (GetPanelAttribute only.)

ATTR_DIMMED int 1 = panel disabled
0 = panel enabled

ATTR_FIRST_CHILD int The first child panel for the parent panel.
(GetPanelAttribute only.)

ATTR_FLOATING int Specifies whether the panel floats above all
non-floating panels. Applies to top-level
panels in Microsoft Windows.

ATTR_FRAME_COLOR int RGB valueSee discussion following this
table. (Child panels only.)

ATTR_FRAME_STYLE int The frame style of the panel. (Child panels
only.)

ATTR_FRAME_THICKNESS int Thickness of panel frame.
range = 1 to 10 (see Figure 3-3) (Child panels
only.)

ATTR_HEIGHT int Height of panel, range = 1 to 32767 (see
Figure 3-3)

ATTR_HSCROLL_OFFSET int The offset of the horizontal scroll bar (in
pixels)

ATTR_HSCROLL_OFFSET_MAX int The number of pixels you have to scroll to
reach the right edge of the right-most object on
the panel (GetPanelAttribute only)

(continues)

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-14 © National Instruments Corporation

Table 3-2. Panel Attributes (Continued)

Name Type Description

ATTR_LEFT int Left position of panel, range = 1 to 32767 or
VAL_AUTO_CENTER (see Figure 3-3)

ATTR_MENU_BAR_VISIBLE int 1 = menu bar visible
0 = menu bar invisible

ATTR_MENU_HEIGHT int Height of menu bar,
range = 1 to 32767 (See Figure 3-3.)
(GetPanelAttribute only)

ATTR_MOUSE_CURSOR int The mouse cursor style.
 (See Table 3-4.)

ATTR_MOVABLE int 1 = movable panel
0 = immovable panel (child panels only)

ATTR_NEXT_PANEL int The next child panel for the parent panel
(GetPanelAttribute only.)

ATTR_NUM_CHILDREN int The number of child panels for the parent
panel. (GetPanelAttribute only.)

ATTR_NUM_CTRLS int The number of controls on the panel
(GetPanelAttribute only).

ATTR_PANEL_FIRST_CTRL int The first control on the panel.
(GetPanelAttribute only.)

ATTR_PANEL_MENU_BAR_CONSTANTchar * The menubar control ID name for the panel.
(GetPanelAttribute only.)

ATTR_PANEL_MENU_BAR_CONSTANT_
LENGTH

int The number of characters in the menubar
control ID name. (GetPanelAttribute
only.)

ATTR_PANEL_PARENT int The panel constant ID of the parent of the
child panel. (GetPanelAttribute only.)

ATTR_PARENT_SHARES_SHORTCUT_
KEYS

int 1 = share shortcut keys
0 = do not share shortcut keys

ATTR_SCROLL_BAR_COLOR int RGB valueSee discussion following this
table.

(continues)

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-15 LabWindows/CVI User Interface Reference

Table 3-2. Panel Attributes (Continued)

Name Type Description

ATTR_SCROLL_BARS int VAL_NO_SCROLL_BARS or
VAL_HORIZ_SCROLL_BAR or
VAL_VERT_SCROLL_BAR or
VAL_BOTH_SCROLL_BARS

ATTR_SIZABLE int 1 = panel sizable
0 = panel not sizable (Child panels only)

ATTR_SYSTEM_MENU_VISIBLE int 1 = The system menu is visible
0 = The system menu is not visible

ATTR_SYSTEM_WINDOW_HANDLE int Returns a number that can be cast to obtain the
system specific window handle for a top-level
window. (GetPanelAttribute only—see
following discussion)

ATTR_TITLE char * The title of the panel
ATTR_TITLE_BACKCOLOR int RGB valueSee discussion following this

table. (Child panels only.)
ATTR_TITLE_BOLD int 1 = title is bold

0 = title is not bold
(Child panels only.)

ATTR_TITLE_COLOR int RGB valueSee discussion following this
table. (Child panels only.)

ATTR_TITLE_FONT char * The font of the panel title (see Table 3-5)
(Child panels only.)

ATTR_TITLE_FONT_NAME_LENGTH int Number of characters in the name of the title
font (GetPanelAttribute only) (Child
panels only.)

ATTR_TITLE_ITALIC int 1 = title in italics
0 = title not in italics
(Child panel only.)

ATTR_TITLE_LENGTH int The number of characters in panel title
(GetPanelAttribute only).

ATTR_TITLE_POINT_SIZE int Point size of the title
range = 1 to 32767

(continues)

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-16 © National Instruments Corporation

Table 3-2. Panel Attributes (Continued)

Name Type Description

ATTR_TITLE_SIZE_TO_FONT int Specify whether the child panel title is sized to
the font.
0 = not sized
1 = sized

ATTR_TITLE_STRIKEOUT int 1 = title has strikeout
0 = title does not have strikeout
(Child panels only.)

ATTR_TITLE_UNDERLINE int 1 = title underlined
0 = title not underlined
(Child panels only.)

ATTR_TITLEBAR_THICKNESS int Thickness of panel title bar, range = 1 to
32767 (see Figure 3-3)
(Child panels only.)

ATTR_TITLEBAR_VISIBLE int 1 = title bar visible
0 = title bar invisible

ATTR_TOP int Top position of panel, range = 1 to 32767 or
VAL_AUTO_CENTER. (See Figure 3-3.)

ATTR_VISIBLE int 1 = panel visible
0 = panel invisible

ATTR_VSCROLL_OFFSET int The offset of the vertical scroll bar (in pixels)
ATTR_VSCROLL_OFFSET_MAX int The number of pixels you have to scroll to

reach the bottom edge of the lowest object on
the panel .(GetPanelAttribute only)

ATTR_WIDTH int The width of the panel in pixels. Valid range:
0 to 32767.

ATTR_WINDOW_ZOOM int VAL_MAXIMIZE, VAL_MINIMIZE , or
VAL_NO_ZOOM
(Windows only—See following discussion.)

ATTR_ZPLANE_POSITION int The drawing order of the panel. The lowest
ordered control (0) is on top. Valid Range: 0 to
(Number of Panels – 1) (For child panels
only.)

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-17 LabWindows/CVI User Interface Reference

Panel Attribute Discussion

ATTR_CAN_MAXIMIZE, ATTR_CAN_MAXIMIZE, and ATTR_CLOSE_ITEM_VISIBLE are
only implemented for top level windows on Windows. Setting these attributes on child panels or
on top level XWindows panels has no effect and does not return errors.

ATTR_SYSTEM_WINDOW_HANDLE returns an integer that can be cast to obtain the system
specific window handle for a panel. The attribute returns 0 for child panels. The actual type of
the value is HWND on Windows, and Window on XWindows. Setting another panel attribute
(example: ATTR_TITLEBAR_VISIBLE) may cause the value of
ATTR_SYSTEM_WINDOW_HANDLE to change since the panel has to destroy and recreate its
window to change certain attributes. Installing and uninstalling a panel as a pop-up can also
change the window handle. So, obtain the window handle again after taking any of these
actions.

ATTR_WINDOW_ZOOM is only implemented for top level windows on Windows. Setting it on a
child panel or on a top level XWindows panel has no effect and does not return an error.

Setting the ATTR_WINDOW_ZOOM attribute automatically makes the panel visible. If the
attribute is set to VAL_NO_ZOOM or VAL_MAXIMIZE, the panel is activated. If the attribute is
set to VAL_MINIMIZE , the panel is deactivated. Making the panel invisible automatically
resets the ATTR_WINDOW_ZOOM attribute to VAL_NO_ZOOM.

An RGB value is a 4-byte integer with the hexadecimal format 0x00RRGGBB. RR, GG, and BB
are the respective red, green, and blue components of the color value. Common colors appear in
the following table. The first sixteen colors listed are the sixteen standard colors.

Table 3-3. Common Color Values

Value Code

VAL_RED 0xFF0000L

VAL_GREEN 0x00FF00L

VAL_BLUE 0x0000FFL

VAL_CYAN 0x00FFFFL

VAL_MAGENTA 0xFF00FFL

VAL_YELLOW 0xFFFF00L

VAL_DK_RED 0x800000L

VAL_DK_BLUE 0x000080L

VAL_DK_GREEN 0x008000L

VAL_DK_CYAN 0x008080L

VAL_DK_MAGENTA 0x800080L

(continues)

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-18 © National Instruments Corporation

Table 3-3. Common Color Values (Continued)

Value Code
VAL_DK_YELLOW 0x808000L
VAL_LT_GRAY 0xCCCCCCL
VAL_DK_GRAY 0x808080L
VAL_BLACK 0x000000L
VAL_WHITE 0xFFFFFFL
VAL_PANEL_GRAY 0xCCCCCCL
VAL_GRAY 0xA0A0A0L
VAL_OFFWHITE 0xE5E5E5L
VAL_TRANSPARENT 0x1000000L

You can also use the User Interface Library function, MakeColor , to create an RGB value
from red, green, and blue color components.

The following list presents ATTR_FRAME_STYLE values.

VAL_OUTLINED_FRAME
VAL_BEVELLED_FRAME
VAL_RAISED_FRAME
VAL_HIDDEN_FRAME
VAL_STEP_FRAME
VAL_RAISED_OUTLINE_FRAME

To see the different panel frame styles, edit a panel in the User Interface Editor and select the
various frame styles.

Figure 3-3 shows the geometric attributes of a panel.

Figure 3-3. The Geometric Attributes of a Panel

Note: Always set ATTR_FRAME_STYLE before setting ATTR_FRAME_THICKNESS.

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-19 LabWindows/CVI User Interface Reference

Table 3-4 lists the values and cursor styles corresponding to ATTR_MOUSE_CURSOR.

Table 3-4. Values and Cursor Styles for ATTR_MOUSE_CURSOR

Value Cursor Style

VAL_DEFAULT_CURSOR

VAL_CHECK_CURSOR

VAL_CROSS_HAIR_CURSOR

VAL_BOX_CURSOR

VAL_POINTING_FINGER_CURSOR

VAL_OPEN_HAND_CURSOR

VAL_QUESTION_MARK_CURSOR

VAL_HOUR_GLASS_CURSOR

VAL_HIDDEN_CURSOR

VAL_SIZE_NS_CURSOR

VAL_SIZE_EW_CURSOR

VAL_SIZE_NW_SE_CURSOR

VAL_SIZE_NE_SW_CURSOR

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-20 © National Instruments Corporation

Table 3-5 lists valid font values.

Table 3-5. Font Values

Type Value

Platform independent fonts VAL_MENU_FONT

VAL_MESSAGE_BOX_FONT

VAL_DIALOG_FONT

VAL_EDITOR_FONT

VAL_APP_FONT

Platform independent metafonts VAL_MENU_META_FONT

VAL_MESSAGE_BOX_META_FONT

VAL_DIALOG_META_FONT

VAL_EDITOR_META_FONT

VAL_APP_META_FONT

LabWindows/CVI supplied
metafonts

VAL_7SEG_META_FONT

VAL_SYSTEM_META_FONT

Host fonts See discussion following this table.

User-defined metafonts See discussion following this table.

Platform Independent Fonts That Are Resident on PCs and UNIX

These fonts contain typeface information only and use typefaces native to each platform
supported by LabWindows/CVI. LabWindows/CVI uses VAL_MESSAGE_BOX_META_FONT
for message boxes. Under Windows 95, this font is for message boxes. On other platforms, this
font is the same as VAL_DIALOG_META_FONT.

Platform-Independent Metafonts That Are Resident on PCs and UNIX

Metafonts contain typeface information, point size, and text styles such as bold, underline, italic,
and strikeout. The platform independent metafonts listed in Table 3-5 use typefaces that are
native to each platform. They have been designed so that the height and width of the font is as
similar as possible across platforms. These metafonts are used in the LabWindows/CVI
environment. VAL_MENU_META_FONT is bold and is used for menu and menu item names.
VAL_DIALOG_META_FONT is bold and is used for labels in dialog boxes and function panels.

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-21 LabWindows/CVI User Interface Reference

VAL_EDITOR_META_FONT is a monospaced metafont that is the default font in the Source
windows. VAL_APP_META_FONT is a smaller, non-bold alternative to
VAL_DIALOG_META_FONT and is the default font in the Project window.

Metafonts Supplied by LabWindows/CVI

These metafonts are included in LabWindows/CVI, but use typefaces that are not native to PC or
UNIX systems. VAL_7SEG_META_FONT provides compatibility with LabWindows for DOS.
VAL_SYSTEM_META_FONT provides compatibility with function panel help text and user
interface panels from LabWindows for DOS that use extended IBM PC characters. Although the
extended IBM characters are provided, their use is discouraged since other fonts do not contain
them. (Cut/Paste operations with extended IBM characters fail across applications that use
other fonts.)

Host Fonts

In addition to the fonts provided with LabWindows/CVI, you can use any host font supported on
your system. For example, Arial, Courier, and Roman are available under Windows.

Note: When you change the font and point size of text, always set the font before setting the
point size or style attributes.

User Defined Metafont

You can create metafonts with the CreateMetaFont function. You can then apply the
metafont to any control or panel attribute that takes a font value. The typeface, point size, and
text styles defined by the metafont are all set at once. In addition, the PlotText and
GetTextDisplaySize functions require a metafont as an input parameter.

Programming with Menu Bars

This section describes how to use User Interface Library functions to control the elements of
user interface menu bars.

Menu Bar Functions

Use LoadMenuBar to load a menu bar from a resource file created in the User Interface Editor
and display it on a panel. When LoadMenuBar loads a menu bar from a resource file, it
references the menu bar using the constant name that you assigned to the menu bar in the User
Interface Editor. LoadMenuBar returns a handle that you use in subsequent User Interface
Library functions to reference the menu bar. After a menu bar has been loaded, it generates a
user event whenever the user selects a menu bar command. Refer to the Processing Menu Bar
Events section of this chapter for additional information.

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-22 © National Instruments Corporation

Use NewMenuBar to create a new menu bar during program execution. NewMenuBar returns
a handle that you use to reference the menu bar in subsequent operations. Use the single
parameter of NewMenuBar to specify the panel on which you want to locate the menu bar. Use
NewMenu, NewSubMenu, and NewMenuItem to construct the pull-down menu system.

Use SetPanelMenuBar to assign a menu bar to a panel. You can assign a single panel only
one menu bar at a time. Multiple panels can share the same menu bar.

Use GetPanelMenuBar to get the menu bar handle associated with a panel.

Use GetSharedMenuBarEventPanel to get the handle of the panel on which a menu bar
event occurred when multiple panels share a menu bar. You need this function only when using
GetUserEvent ; the panel handle is passed as a parameter to a menu callback function.

Use GetMenuBarAttribute to obtain a particular menu bar or menu item attribute.

Use SetMenuBarAttribute to set a particular menu bar or menu item attribute.

Use InsertSeparator to programmatically place a dividing line between menu items.

Use NewMenu / DiscardMenu , NewMenuItem / DiscardMenuItem , and NewSubMenu /
DiscardSubMenu to programmatically alter a menu system.

Use EmptyMenu to remove the contents of a particular menu or sub-menu.

Use EmptyMenuBar to remove the menu bar from the screen and remove its contents from
memory but retain the menu bar handle.

Use DiscardMenuBar to remove the menu bar from the screen and free its handle from
memory.

Processing Menu Bar Events

There are two ways to process menu bar events. One way is to assign callback functions to
menu items and immediate action menus. When a commit event is generated, the appropriate
callback function executes. Alternatively you can use an event loop that includes a call to
GetUserEvent . When a commit event is generated, GetUserEvent returns the appropriate
menu bar handle and menu item ID, and the program conditionally executes portions of code.
Commit events are generated when the user selects a menu item or immediate action menu item.

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-23 LabWindows/CVI User Interface Reference

Using Callback Functions...

If you create your menu bar in the User Interface Editor, you can assign callback function names
to menu items and immediate action menus from within the editor. When LoadMenuBar loads
the menu bar, LabWindows/CVI automatically installs your callback functions and calls them
whenever commit events are generated on menu items and immediate action menus.

If you create your menu bar programmatically via NewMenuBar, you can use
InstallMenuCallback to install callback functions for immediate action menus. Menu
item callbacks are installed as a parameter to NewMenuItem . Your callback functions are then
called whenever commit events are generated on menu items or immediate action menus. You
should use the MenuCallbackPtr typedef from userint.h as a model to declare your
menu callback functions in your program.

You can also use InstallMenuDimmerCallback to install a callback function that is called
just before a pull-down menu appears when the user clicks a menu bar or presses a menu
short-cut key. This callback function can update the state of dimmed menu items before the
pull-down menu is displayed to the user. You should use the MenuDimmerCallbackPtr
typedef from userint.h as a model to declare this callback function in your program.

Callbacks must be initiated through a call to RunUserInterface or a GetUserEvent
loop.

Using an Event Loop...

When the user generates a commit event on a menu item or immediate action menu, the
GetUserEvent function returns the appropriate menu bar handle and menu ID as parameters.
GetUserEvent can operate in one of two ways.

• GetUserEvent waits for the user to generate an event before returning to the calling
program.

• GetUserEvent returns immediately whether or not an event has occurred. If a menu
event occurred, GetUserEvent returns a valid menu or menu item ID.

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-24 © National Instruments Corporation

Menu Bar Attributes

Table 3-6 lists menu and menu item attributes that you can retrieve or change through
GetMenuBarAttribute and SetMenuBarAttribute .

Table 3-6. Menu and Menu Item Attributes

Attribute Name Type Description

Menu and
Menu Item
Attribute

ATTR_DIMMED int 1 = menu/item is disabled
0 = menu/item is enabled
Pass 0 (zero) if the attribute
corresponds to the entire menu bar.

ATTR_CALLBACK_DATA void * A pointer to user data area that will
be passed to the menu or menu
item callback function.

ATTR_CALLBACK_FUNCTION
_POINTER

void * A pointer to the callback function
for the menu or menu item.

ATTR_CALLBACK_NAME char * The name of the callback function
associated with the menu or menu
item (GetMenuBarAttribute
only).

ATTR_CALLBACK_NAME_
LENGTH

int The number of characters in the
name of the menu or menu item
callback name
(GetMenuBarAttribute only).

ATTR_CONSTANT_NAME char * The constant name assigned to the
menu or menu item in the .uir file
when created by the user interface
editor (GetMenuBarAttribute
only).

ATTR_CONSTANT_NAME_LEN
GTH

int The number of characters in the
constant name of the menu or menu
item (GetMenuBarAttribute
only).

(continues)

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-25 LabWindows/CVI User Interface Reference

Table 3-6. Menu and Menu Item Attributes (Continued)

Attribute Name Type Description

Menu ATTR_MENU_NAME char * The name of the menu item.

ATTR_MENU_NAME_LENGTH int The number of characters in the menu
item (GetMenuBarAttribute
only).

Menu Bar
Only

ATTR_DRAW_LIGHT_BEVEL int Indicates whether the menubar draws
with a light or dark bevel at the
bottom.
(Applies only to Windows 95.)
 0 = Dark Bevel (the default)
 1 = Light Bevel

ATTR_NUM_MENUS int The number of menus for the menu
bar.

Menu Item ATTR_CHECKED int 1 = a check mark by the menu item
0 = no check mark by the menu item

ATTR_IS_SEPARATOR int 1 = the menu item is a separator,
0 = the menu item is not a separator
(GetMenuBarAttribute only).

ATTR_ITEM_NAME char * The name of the menu item

ATTR_ITEM_NAME_LENGTH int The number of characters in the menu
item name
(GetMenuBarAttribute only).

ATTR_NUM_MENU_ITEMS int The number of menu items for the
menu.

ATTR_SHORTCUT_KEY int Key code for the menu item shortcut
key (see Table 3-7)

ATTR_SUBMENU_ID int The constant ID for the submenu
(GetMenuBarAttribute only).

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-26 © National Instruments Corporation

Menu Bar Attribute Discussion

In source code, a shortcut key is represented by a 4-byte integer consisting of three bit fields,
0x00MMVVAA, where:

MM = the modifier key

VV = the virtual key

AA = the ASCII key

When you construct a shortcut key, a modifier key is bit-wise OR’ed with a virtual key or an
ASCII key. Either the ASCII field or the virtual key field will be all zeros. For example,
VAL_SHIFT_MODIFIER | VAL_F1_VKEY produces a shortcut key of <Shift-F1>, and
VAL_MENUKEY_MODIFIER | 'D' produces a shortcut key of <Ctrl-D>.

Virtual keys do not require modifiers but ASCII keys require at least one modifier.

Table 3-7 shows the modifiers and virtual keys for shortcut keys.

Table 3-7. Key Modifiers and Virtual Keys

Type Value

Key modifiers VAL_SHIFT_MODIFIER

VAL_SHIFT_AND_MENUKEY

VAL_MENUKEY_MODIFIER

<Ctrl> on the PC and <Ctrl> or <Meta> on
the SPARCstation.

VAL_UNDERLINE_MODIFIER

<Alt> on the PC and the SPARCstation.
Also, optionally, <META> on the
SPARCstation.

(continues)

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-27 LabWindows/CVI User Interface Reference

Table 3-7. Key Modifiers and Virtual Keys (Continued)

Type Value

Virtual key codes VAL_FWD_DELETE_VKEY

not available on SPARCstation keyboards.
VAL_BACKSPACE_VKEY

 and <Back Space> on the
SPARCstation.
VAL_ESC_VKEY

VAL_TAB_VKEY

VAL_ENTER_VKEY

VAL_UP_ARROW_VKEY

VAL_DOWN_ARROW_VKEY

VAL_LEFT_ARROW_VKEY

VAL_RIGHT_ARROW_VKEY

VAL_INSERT_VKEY

VAL_HOME_VKEY

VAL_END_VKEY

VAL_PAGE_UP_VKEY

VAL_PAGE_DOWN_VKEY

VAL_F1_VKEY

VAL_F2_VKEY

VAL_F3_VKEY

VAL_F4_VKEY

VAL_F5_VKEY

VAL_F6_VKEY

VAL_F7_VKEY

VAL_F8_VKEY

VAL_F9_VKEY

VAL_F10_VKEY

VAL_F11_VKEY

VAL_F12_VKEY

When you use GetMenuBarAttribute , the three constants shown in Table 3-8 are available
to mask the three bit fields of a shortcut key.

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-28 © National Instruments Corporation

Table 3-8. Constants for Masking Three Bit Fields in GetMenuBarAttribute

Value Mask

VAL_MODIFIER_MASK 0x00FF0000

VAL_VKEY_MASK 0x0000FF00

VAL_ASCII_KEY_MASK 0x000000FF

To separate each field of a key code, perform a bit-wise AND operation on the key code using
each of the three masks.

Programming with Controls

This section describes how to use the User Interface Library functions to control the elements of
user interface controls.

Control Functions for All Controls

When you use LoadPanel to load a panel from a resource file created in the user interface
editor into memory, it also loads the controls on that panel. Use the defined constant names
(IDs) assigned to the controls on the panel in the User Interface Editor to reference the controls
in the control functions.

Use NewCtrl to create a new control during program execution. NewCtrl returns an ID you
use to reference the control in subsequent operations. Use the first parameter of NewCtrl to
specify the panel on which the control is to appear. The second parameter of NewCtrl specifies
the control style. (Table 3-10 lists control styles.) You also specify the name and position of the
control through parameters to NewCtrl .

Use DuplicateCtrl to create a new control that is a duplicate of a control that was loaded by
LoadPanel or created by NewCtrl . DuplicateCtrl returns an ID that you use to
reference the control in subsequent operations. You specify the destination panel, name, and
position of the control through parameters to DuplicateCtrl .

Use SetCtrlVal to set a control to a particular value. This function is not valid for Graph and
Strip Chart controls.

Use GetCtrlVal to obtain the current value of a control. This function is not valid for Graph
and Strip Chart controls.

Use GetActiveCtrl to obtain the control that receives keyboard events when its panel is the
active panel.

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-29 LabWindows/CVI User Interface Reference

Use SetActiveCtrl to establish the control that receives keyboard events when its panel is
the active panel. The label of the active control is inset when its panel is the active panel.

Use DefaultCtrl to restore a control to its default value. If the control is visible, the
program updates it to reflect its default value. You assign default values to controls in the User
Interface Editor or through SetCtrlAttribute . This function is not valid for Graph and
Strip Chart controls.

Use GetCtrlBoundingRect to obtain the top, left, height, and width of the rectangle
bounding the control and its label.

Use GetCtrlAttribute to obtain a particular attribute of a control.

Use SetCtrlAttribute to set a particular attribute of a control. When changing control
attributes that affect the font of a control, ATTR_TEXT_FONT should be the first attribute you
modify.

Use DiscardCtrl to remove a control from memory. If its panel is visible, the control is
removed from the screen. LabWindows/CVI allows you to call DiscardCtrl only from an
EVENT_COMMIT event. A call to DiscardCtrl from any other type of event may cause
unpredictable behavior.

Control Functions for List Controls (List Boxes and Rings)

List controls are unique because they contain an indexed set of label/value pairs. Labels are
strings that appear on the ring, and values can be of any type. For more information on a special
type of ring control, the picture ring control, see the Programming Picture Controls section.

List Boxes and Rings...

Use InsertListItem to add an item to the list.

Use DeleteListItem to delete one or more items from the list.

Use ReplaceListItem to replace a given list item with a new item. To preserve the existing
label and change only the value, pass "0" as the label parameter.

Use GetCtrlVal to obtain the value of the currently active list item.

Use SetCtrlVal to set the currently active list item based on a given value.

Use GetCtrlIndex to obtain the zero-based index of the currently active list item.

Use SetCtrlIndex to set the currently active list item based on a given zero-based index.

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-30 © National Instruments Corporation

Use GetValueFromIndex to obtain the value of a list control corresponding to a given zero-
based index of the list.

Use GetValueLengthFromIndex to obtain the length of the value (strings only) of a list
control corresponding to a given zero-based index of the list.

Use GetIndexFromValue to obtain a zero-based index of a list control corresponding to a
given value.

Use GetNumListItems to obtain the number of items contained in a list control.

Use GetLabelFromIndex to obtain the label of a list item given a zero-based index.

Use GetLabelLengthFromIndex to obtain the length of the label of a list item given a
zero-based index.

Use ClearListCtrl to clear the contents of a list control.

List Boxes only...

Use SetListItemImage to set the image associated with a particular list item. (List item
images are the folder icons that appear in the Open /Save File dialog box in LabWindows/CVI.)

Use GetListItemImage to obtain the image associated with a particular list item. (List item
images are the folder icons that appear in the Open/Save File dialog box in LabWindows/CVI.)

Use IsListItemChecked to determine if a particular list item is checked.

Use CheckListItem to programmatically check a list item.

Use GetNumCheckedItems to determine the number of checked list items.

Control Functions for Text Boxes

Text boxes in the User Interface library can contain a finite number of lines. If the number of
lines multiplied by the pixel height of the font exceeds 32767, the text box does not scroll. If you
use NIDialogMetaFont or the NIEditorMetaFont , your text box can contain a
maximum of approximately 2500 lines.

Use GetCtrlVal to obtain the text in the text box.

Use SetCtrlVal to append text to a text box.

Use InsertTextBoxLine to add text into a text box starting at a given line.

Use DeleteTextBoxLine to delete one or more lines from a text box.

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-31 LabWindows/CVI User Interface Reference

Use ReplaceTextBoxLine to replace a given line with new text.

Use GetNumTextBoxLines to obtain the number of lines used in a text box.

Use GetTextBoxLineLength to obtain the length of a particular line in a text box.

Use GetTextBoxLine to obtain parameters a particular line in a text box.

Use ResetTextBox to replace the contents of a text box.

Processing Control Events

Once a panel is displayed, there are two ways to process events from the controls on that panel.
You can assign callback functions to the controls. When any type of event occurs on a control,
the appropriate callback function executes. Alternatively, you can use an event loop that
includes a call to GetUserEvent . When the user generates a commit event on a control,
GetUserEvent returns the appropriate control ID, and your program can conditionally
execute portions of code. Commit events occur on a control when a user changes the value on a
control and presses <Enter> or <Tab> or clicks on another control with the mouse.

Using Callback Functions...

If you create your controls in the User Interface Editor, you can assign callback function names
to the controls from within the editor. When LoadPanel loads the panel, LabWindows/CVI
automatically installs your callback functions and calls them whenever events are generated on
the controls.

If you create your controls programmatically via NewCtrl , you can use
InstallCtrlCallback to assign callback function names to the controls. Your callback
function is then called whenever an event is generated on the panel. You should use the
CtrlCallbackPtr typedef from userint.h as a model to declare your control callback
functions in your program.

Callbacks must be initiated through a call to RunUserInterface or to a GetUserEvent
loop.

Note: Do not call DiscardCtrl from within the callback function of the control you want
to discard. Doing this gives unpredictable results.

Using an Event Loop...

When the user generates a commit event on a control, the GetUserEvent function returns the
appropriate ID of the control as a parameter. GetUserEvent can operate in one of two ways.

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-32 © National Instruments Corporation

• GetUserEvent waits for the user to generate an event before returning to the calling
program.

• GetUserEvent returns immediately whether or not an event occurs. If no event occurrs,
the control ID parameter is -1.

Control Attributes

Table 3-9 lists control attributes that you can retrieve or change through GetCtrlAttribute
and SetCtrlAttribute .

Table 3-9. Control Attributes

For all controls

Name Type Description

ATTR_CALLBACK_DATA void * A pointer to user data that is passed to the
panel callback function

ATTR_CALLBACK_FUNCTION_POINT
ER

void * A pointer to the callback function for the
control.

ATTR_CALLBACK_NAME char * The name of the callback function associated
with the control (GetCtrlAttribute
only).

ATTR_CALLBACK_NAME_LENGTH int The number of characters in the name of the
control callback name
(GetCtrlAttribute only).

ATTR_CONSTANT_NAME char * The constant name assigned to the control in
the .uir file when created by the User
Interface Editor (GetCtrlAttribute
only).

ATTR_CONSTANT_NAME_LENGTH int The number of characters in the constant
name of the control (GetCtrlAttribute
only).

ATTR_CTRL_STYLE int The control style, see Table 3-10
(GetCtrlAttribute only)

ATTR_DIMMED int 1 = control disabled
0 = control enabled

(continues)

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-33 LabWindows/CVI User Interface Reference

For all controls (Continued)

Name Type Description

ATTR_LEFT int -32768 to 32767

ATTR_NEXT_CTRL int The next control on the panel
(GetCtrlAttribute only).

ATTR_OVERLAPPED int Indicates whether the control is overlapped
by another control (or its own parts).
(GetCtrlAttribute only)

ATTR_TOP int -32768 to 32767

ATTR_VISIBLE int 1 = control visible
0 = control invisible

ATTR_WIDTH int 0 to 32767

ATTR_ZPLANE_POSITION int The order of the control in the z-plane. The
lowest ordered control (0) is on top.

For all controls except simple strings, simple numerics, and simple rings

Name Type Description

ATTR_HEIGHT int 0 to 32767

For all controls except indicator-only controls (indicator-only
controls are: decorations, strip charts, text messages, timers, and pictures)

Name Type Description

ATTR_CTRL_MODE int VAL_HOT or VAL_NORMAL or
VAL_VALIDATE or VAL_INDICATOR

ATTR_CTRL_TAB_POSITION int The tab order of the control.

For all controls except decorations, canvases, graphs and strip charts

Name Type Description

ATTR_CTRL_VAL same as
control type

Same functionality as GetCtrlVal and
SetCtrlVal .

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-34 © National Instruments Corporation

For all controls with frames (this includes text boxes, strings, numerics,
simple rings, ring meters, ring gauges, list boxes, decorations, and pictures)

Name Type Description

ATTR_FRAME_COLOR int RGB value—see discussion following this
table.

For controls with labels (all controls except decorations, and text messages)

Name Type Description

ATTR_LABEL_BOLD int 1 = label is bold
0 = label is not bold

ATTR_LABEL_COLOR int RGB value—see discussion following this
table.

ATTR_LABEL_FONT char * The font of the control label (see Table 3-5).

ATTR_LABEL_FONT_NAME_LENGTHint Number of characters in the name of the
label font (GetCtrlAttribute only).

ATTR_LABEL_ITALIC int 1 = label in italics
0 = label not in italics

ATTR_LABEL_POINT_SIZE int Point size of the label; range = 1 to 32767.

ATTR_LABEL_STRIKEOUT int 1 = label has strikeout
0 = label does not have strikeout

ATTR_LABEL_TEXT char * The label of the control.

ATTR_LABEL_TEXT_LENGTH int Number of characters in the label
(GetCtrlAttribute only).

ATTR_LABEL_UNDERLINE int 1 = label underlined
0 = label not underlined

ATTR_LABEL_VISIBLE int 1 = label is visible
0 = label is invisible

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-35 LabWindows/CVI User Interface Reference

For controls with labels except non-picture command buttons

Name Type Description

ATTR_LABEL_BGCOLOR int Label background color, RGB value.

ATTR_LABEL_HEIGHT int Height of label; range = 0 to 32767.

ATTR_LABEL_JUSTIFY int VAL_LEFT_JUSTIFIED or
VAL_RIGHT_JUSTIFIED or
VAL_CENTER_JUSTIFIED

ATTR_LABEL_LEFT int Left position of label,
range = -32768 to 32767 or use
VAL_AUTO_CENTER.

ATTR_LABEL_RAISED int 1 = label is raised
0 = label is not raised

ATTR_LABEL_SIZE_TO_TEXT int 1 = label border restricted to label text size
0 = label border not restricted to label text
size

ATTR_LABEL_TOP int Top position of label,
range = -32768 to 32767 or use
VAL_AUTO_CENTER or
VAL_RIGHT_ANCHOR or
VAL_LEFT_ANCHOR.

ATTR_LABEL_WIDTH int Width of label, range = 0 to 32767.

For controls with text except graphs and strip charts (controls with text are
all controls except: decorations, pictures, canvases, LEDs, and buttons without on/off text)

Name Type Description

ATTR_TEXT_BOLD int 1 = text is bold
0 = text is not bold

ATTR_TEXT_COLOR int RGB value—see discussion below.

ATTR_TEXT_FONT char * The font of the text (see Table 3-5).

(continues)

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-36 © National Instruments Corporation

For controls with text except graphs and strip charts (controls with text are
all controls except: decorations, pictures, canvases, LEDs, and buttons without on/off text)

Name Type Description

ATTR_TEXT_FONT_NAME_LENGTH int Number of characters in the name of the text
font (GetCtrlAttribute only).

ATTR_TEXT_ITALIC int 1 = text in italics
0 = text not in italics

ATTR_TEXT_POINT_SIZE int Point size of the text, range = 1 to 32767.

ATTR_TEXT_STRIKEOUT int 1 = text has strikeout
0 = text does not have strikeout

ATTR_TEXT_UNDERLINE int 1 = text underlined
0 = text not underlined

For controls with text except graphs,
strip charts, ring slides, binary switches, and text buttons

Name Type Description

ATTR_TEXT_BGCOLOR int RGB value—see discussion below.

For controls with text except graphs, strip charts,
ring slides, pop-up rings, binary switches, and text buttons

Name Type Description

ATTR_TEXT_JUSTIFY int VAL_LEFT_JUSTIFIED or
VAL_RIGHT_JUSTIFIED or
VAL_CENTER_JUSTIFIED

For controls with variable data types
(this includes numerics, rings, binary switches, and list boxes)

Name Type Description

ATTR_DATA_TYPE int See Table 3-11.

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-37 LabWindows/CVI User Interface Reference

For label/value controls (slides, rings, binary switches, and list boxes)

Name Type Description

ATTR_CTRL_INDEX int 0 to 32767

ATTR_DFLT_INDEX int 0 to 32767

For numerics

Name Type Description

ATTR_CHECK_RANGE int VAL_COERCE or VAL_IGNORE or
VAL_NOTIFY (see Table 3-13).

ATTR_DFLT_VALUE same as
control type

Default value of the control.

ATTR_FORMAT int See Table 3-12.

ATTR_INCR_VALUE same as
control type

Increments for INC/DEC arrows of the
control.

ATTR_MAX_VALUE same as
control type

Maximum value of the control.

ATTR_MIN_VALUE same as
control type

Minimum value of the control.

ATTR_PRECISION int The numeric precision (0 to 15).

ATTR_NSCROLL_OFFSET_MAX int The maximum horizontal scroll bar offset in
pixels; range 0 to 32767.

ATTR_SHOW_RADIX int 1 = radix is shown
0 = radix is not shown

For picture and slide rings and numerics

Name Type Description

ATTR_SHOW_INCDEC_ARROWS int 1 = INC/DEC arrows are shown
0 = INC/DEC arrows are not shown

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-38 © National Instruments Corporation

For strings and text boxes

Name Type Description

ATTR_MAX_ENTRY_LENGTH int Maximum # of characters; -1 means no limit.

ATTR_TEXT_SELECTION_LENGTH int 0 to 32767

ATTR_TEXT_SELECTION_START int 0 to 32767

For text messages, strings, and text boxes

Name Type Description

ATTR_STRING_TEXT_LENGTH int 0 to 32767 (GetCtrlAttribute only).

For text boxes

Name Type Description

ATTR_ENTER_IS_NEWLINE int The <Enter> key causes a newline, otherwise
a <Ctrl-Enter> is used.
1 = <Enter> for newline.
0 = <Ctrl-Enter> for newline.

ATTR_EXTRA_LINES int Number of lines retained off-screen (0 to
32767); -1 = unlimited number of lines
retained off screen

ATTR_HSCROLL_OFFSET int Horizontal scroll offset; range = 0 to 32767
pixels.

ATTR_TOTAL_LINES int Number of lines used
(GetCtrlAttribute only).

ATTR_WRAP_MODE int VAL_CHAR_WRAP or VAL_LINE_WRAP or
VAL_WORD_WRAP

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-39 LabWindows/CVI User Interface Reference

For text boxes and list boxes

Name Type Description

ATTR_FIRST_VISIBLE_LINE int Index of first visible line (zero-based).

ATTR_SCROLL_BAR_COLOR int Any valid RGB value.

ATTR_SCROLL_BAR_SIZE int VAL_SMALL_SCROLL_BARS or
VAL_LARGE_SCROLL_BARS

ATTR_SCROLL_BARS int VAL_NO_SCROLL_BARS or
VAL_HORIZ_SCROLL_BAR or
VAL_VERT_SCROLL_BAR or
VAL_BOTH_SCROLL_BARS
(Horizontal scroll bars not valid for list
boxes.)

ATTR_VISIBLE_LINES int Number of visible lines (0 to 32767).

ATTR_TEXT_CLICK_TOGGLES_
CHECK

int 1 = clicking on the text area toggle the
checkmark
0 = clicking on the text area does not toggle
the checkmark

For list boxes

Name Type Description

ATTR_ALLOW_ROOM_FOR_IMAGES int Specifies whether, when calculating the list
box height, to assume that one or more list
box labels may contain an image. Normally,
the calculation of the list box height takes
into account the image height only if there
currently is an image in the list box. To
make sure that the list box height always
takes into account the height of an image, set
this attribute to TRUE (1).

ATTR_CHECK_MODE int 1 = enable checking
0 = disable checking

(continues)

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-40 © National Instruments Corporation

For list boxes (Continued)

Name Type Description

ATTR_CHECK_STYLE int VAL_CHECK_MARK or VAL_CHECK_BOX

ATTR_HILITE_CURRENT_ITEM int Specifies whether to highlight the currently
selected item in a list box. (The highlight is
shown in reversed colors when list box is
active, a dashed box when inactive.)

ATTR_TEXT_CLICK_TOGGLES_CHECKint 1 = clicking on the text area toggles the
check mark
0 = clicking on the text area does not toggle
the check mark

For strings, numerics, and text boxes

Name Type Description

ATTR_NO_EDIT_TEXT int 1 = enable text editing
0 = disable text editing

For text messages

Name Type Description

ATTR_TEXT_RAISED int 1 = text is raised
0 = text is not raised

ATTR_SIZE_TO_TEXT int 1 = message border restricted to text size
0 = message border not restricted to text size

For command buttons

Name Type Description

ATTR_CMD_BUTTON_COLOR int RGB value—see discussion that follows this
table.

ATTR_SHORTCUT_KEY int See discussion of shortcut keys in Menu Bar
Attributes section of this chapter.

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-41 LabWindows/CVI User Interface Reference

For binary switches

Name Type Description

ATTR_BINARY_SWITCH_COLOR int RGB value—see discussion that follows this
table.

ATTR_OFF_VALUE same as
control type

Value of control when OFF.

ATTR_OFF_VALUE_LENGTH int Only if string value (GetCtrlAttribute
only).

ATTR_ON_VALUE same as
control type

Value of control when ON.

ATTR_ON_VALUE_LENGTH int Only if string value (GetCtrlAttribute
only).

For LEDs and buttons except command buttons

Name Type Description

ATTR_OFF_COLOR int RGB value—see discussion that follows this
table.

ATTR_ON_COLOR int RGB value—see discussion that follows this
table.

For text buttons and binary switches

Name Type Description

ATTR_OFF_TEXT char * Text displayed in OFF position.

ATTR_OFF_TEXT_LENGTH int Number of characters in the OFF text
(GetCtrlAttribute only).

ATTR_ON_TEXT char * Text displayed in ON position.

ATTR_ON_TEXT_LENGTH int Number of characters in the ON text
(GetCtrlAttribute only).

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-42 © National Instruments Corporation

For numerics with digital displays (slides, knobs, dials, meters, and gauges)

Name Type Description

ATTR_DIG_DISP_LEFT int Left position of the digital display;
range = -32768 to 32767.

ATTR_DIG_DISP_TOP int Top position of the digital display;
range = -32768 to 32767.

ATTR_DIG_DISP_HEIGHT int Height of the digital display,
range 0 to 32767.

ATTR_DIG_DISP_WIDTH int Width of the digital display;
range = 0 to 32767.

ATTR_SHOW_DIG_DISP int 1 = show digital display
0 = hide digital display

For numerics and ring slides, knobs, dials, meters, and gauges

Name Type Description

ATTR_FILL_COLOR int RGB value—see discussion that follows this
table.

ATTR_MARKER_STYLE int VAL_NO_MARKERS or
VAL_NO_INNER_MARKERS or
VAL_FULL_MARKERS

ATTR_NEEDLE_COLOR int RGB value—see discussion that follows this
table.

ATTR_SLIDER_COLOR int RGB value—see discussion that follows this
table.

ATTR_TICK_STYLE int VAL_NO_TICKS or
VAL_NO_MINOR_TICKS or
VAL_FULL_TICKS

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-43 LabWindows/CVI User Interface Reference

For numeric and ring slides

Name Type Description

ATTR_FILL_HOUSING_COLOR int RGB value—see discussion that follows this
table.

ATTR_FILL_OPTION int VAL_NO_FILL , VAL_TOP_FILL ,
VAL_BOTTOM_FILL, VAL_RIGHT_FILL ,
or VAL_LEFT_FILL

ATTR_SLIDER_HEIGHT int 0 to 32767

ATTR_SLIDER_WIDTH int 0 to 32767

For numeric and ring knobs, dials, and gauges

Name Type Description

ATTR_MARKER_END_ANGLE int Range = 0 to 359

ATTR_MARKER_START_ANGLE int Range = 0 to 359

For color numerics

Name Type Description

ATTR_SHOW_MORE_BUTTON int 1/0 = show/do not show the MORE button
on the color numeric pop-up.

ATTR_SHOW_TRANSPARENT int 1/0 = show/do not show the transparent icon
on the color numeric pop-up.

For menu rings

Name Type Description

ATTR_MENU_ARROW_COLOR int RGB value—see discussion that follows this
table.

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-44 © National Instruments Corporation

For timer controls

Name Type Description

ATTR_INTERVAL double The interval at which the timer control
callback function will be called (in seconds).

ATTR_ENABLED int 0 = Timer callback is disabled
1 = Timer callback is enabled

 For picture controls, rings, and buttons

Name Type Description

ATTR_FIT_MODE int VAL_SIZE_TO_IMAGE or
VAL_SIZE_TO_PICTURE or
VAL_PICT_CORNER or
VAL_PICT_CENTER or VAL_PICT_TILE

For picture controls and rings

Name Type Description

ATTR_FRAME_VISIBLE int 1 = show picture frame
0 = hide picture frame

For picture controls, rings, and canvas controls

Name Type Description

ATTR_PICT_BGCOLOR int RGB value—see discussion that follows this
table. Also applies to canvas controls

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-45 LabWindows/CVI User Interface Reference

For picture buttons (command and toggle)

Name Type Description

ATTR_IMAGE_FILE char * The filename of the image file to load into
control. A NULL results in no image.

ATTR_IMAGE_FILE_LENGTH int The length of the image file length.

ATTR_SUBIMAGE_HEIGHT int Pixel height of subimage. See discussion
following this table.

ATTR_SUBIMAGE_TOP int Top pixel coordinate of subimage. See
discussion following this table.

ATTR_SUBIMAGE_LEFT int Left pixel coordinate of subimage. See
discussion following this table.

ATTR_SUBIMAGE_WIDTH int Pixel width of subimage. See discussion
following this table.

ATTR_USE_SUBIMAGE int 1 = enable subimage display. 0 = disable
subimage display. See discussion following
this table.

Picture Button Subimage Discussion

ATTR_USE_SUBIMAGE allows the picture button to display a subset of its loaded image. The
subset of the image that is sized to the picture button is specified by the following attributes.

ATTR_SUBIMAGE_TOP
ATTR_SUBIMAGE_LEFT
ATTR_SUBIMAGE_WIDTH
ATTR_SUBIMAGE_HEIGHT

ATTR_SUBIMAGE_TOP and ATTR_SUBIMAGE_LEFT define the horizontal and vertical
offsets in pixels of the picture button's bitmap image that will be displayed relative to the origin
of the bitmap. The bitmap subimage origin (0,0) is the top-left corner of the bitmap.

ATTR_SUBIMAGE_WIDTH and ATTR_SUBIMAGE_HEIGHT define the width and height in
pixels for the displayed subimage.

ATTR_USE_SUBIMAGE does not work with images loaded from Windows metafiles (.WMF).

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-46 © National Instruments Corporation

Control Attribute Discussion

An RGB value is a 4-byte integer with the hexadecimal format 0x00RRGGBB. RR, GG, and BB
are the respective red, green, and blue components of the color value. You can use the User
Interface Library function, MakeColor , to create an RGB value from red, green, and blue color
components. See Table 3-3 for a list of common color values.

Table 3-10 contains the control types that can be used with the ATTR_CTRL_STYLE attribute.

Table 3-10. Control Styles for ATTR_CTRL_STYLE

Type Value Icon

Numerics CTRL_NUMERIC

CTRL_NUMERIC_THERMOMETER

CTRL_NUMERIC_TANK

CTRL_NUMERIC_GAUGE

CTRL_NUMERIC_METER

CTRL_NUMERIC_KNOB

CTRL_NUMERIC_DIAL

CTRL_NUMERIC_VSLIDE

CTRL_NUMERIC_HSLIDE

CTRL_NUMERIC_FLAT_VSLIDE

CTRL_NUMERIC_FLAT_HSLIDE

CTRL_NUMERIC_LEVEL_VSLIDE

CTRL_NUMERIC_LEVEL_HSLIDE

CTRL_NUMERIC_POINTER_VSLIDE

CTRL_NUMERIC_POINTER_HSLIDE

CTRL_COLOR_NUMERIC

(continues)

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-47 LabWindows/CVI User Interface Reference

Table 3-10. Control Styles for ATTR_CTRL_STYLE (Continued)

Type Value Icon

String CTRL_STRING

Text messageCTRL_TEXT_MSG

Text box CTRL_TEXT_BOX

Command
buttons

CTRL_SQUARE_COMMAND_BUTTON

CTRL_OBLONG_COMMAND_BUTTON

CTRL_ROUND_COMMAND_BUTTON

CTRL_PICTURE_COMMAND_BUTTON

CTRL_ROUNDED_COMMAND_BUTTON

Buttons CTRL_ROUND_BUTTON

CTRL_SQUARE_BUTTON

CTRL_ROUND_FLAT_BUTTON

CTRL_SQUARE_FLAT_BUTTON

CTRL_ROUND_RADIO_BUTTON

CTRL_SQUARE_RADIO_BUTTON

CTRL_CHECK_BOX

CTRL_ROUND_PUSH_BUTTON

CTRL_SQUARE_PUSH_BUTTON

CTRL_ROUND_PUSH_BUTTON2

CTRL_SQUARE_PUSH_BUTTON2

CTRL_SQUARE_TEXT_BUTTON

CTRL_OBLONG_TEXT_BUTTON

CTRL_ROUND_TEXT_BUTTON

CTRL_ROUNDED_TEXT_BUTTON

CTRL_PICTURE_TOGGLE_BUTTON

(continues)

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-48 © National Instruments Corporation

Table 3-10. Control Styles for ATTR_CTRL_STYLE (Continued)

Type Value Icon

LEDs CTRL_ROUND_LIGHT

CTRL_SQUARE_LIGHT

CTRL_ROUND_LED

CTRL_SQUARE_LED

Binary
switches

CTRL_HSWITCH

CTRL_VSWITCH

CTRL_GROOVED_HSWITCH

CTRL_GROOVED_VSWITCH

CTRL_TOGGLE_HSWITCH

CTRL_TOGGLE_VSWITCH

Rings CTRL_RING

CTRL_RECESSED_MENU_RING

CTRL_MENU_RING

CTRL_POPUP_MENU_RING

CTRL_RING_VSLIDE

CTRL_RING_HSLIDE

CTRL_RING_FLAT_VSLIDE

CTRL_RING_FLAT_HSLIDE

CTRL_RING_LEVEL_VSLIDE

CTRL_RING_LEVEL_HSLIDE

CTRL_RING_POINTER_VSLIDE

CTRL_RING_POINTER_HSLIDE

(continues)

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-49 LabWindows/CVI User Interface Reference

Table 3-10. Control Styles for ATTR_CTRL_STYLE (Continued)

Type Value Icon

CTRL_RING_THERMOMETER

CTRL_RING_TANK

CTRL_RING_GAUGE

CTRL_RING_METER

CTRL_RING_KNOB

CTRL_RING_DIAL

CTRL_PICTURE_RING

List box CTRL_LIST

Decorations CTRL_RAISED_BOX

CTRL_RECESSED_BOX

CTRL_FLAT_BOX

CTRL_RAISED_CIRCLE

CTRL_RECESSED_CIRCLE

CTRL_FLAT_CIRCLE

CTRL_RAISED_FRAME

CTRL_RECESSED_FRAME

CTRL_FLAT_FRAME

CTRL_RAISED_ROUND_FRAME

CTRL_RECESSED_ROUND_FRAME

CTRL_FLAT_ROUND_FRAME

CTRL_RAISED_ROUNDED_BOX

CTRL_RECESSED_ROUNDED_BOX

CTRL_FLAT_ROUNDED_BOX

(continues)

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-50 © National Instruments Corporation

Table 3-10. Control Styles for ATTR_CTRL_STYLE (Continued)

Type Value Icon

Graph CTRL_GRAPH

Strip chart CTRL_STRIP_CHART

Picture CTRL_PICTURE

Timer CTRL_TIMER

Canvas CTRL_CANVAS

The following list presents the control data types that correspond to the ATTR_DATA_TYPE
attribute.

Table 3-11. Control Data Types for the ATTR_DATA_TYPE attribute

Values

VAL_CHAR

VAL_INTEGER

VAL_SHORT_INTEGER

VAL_FLOAT

VAL_DOUBLE

VAL_STRING

VAL_UNSIGNED_SHORT_INTEGER

VAL_UNSIGNED_INTEGER

VAL_UNSIGNED_CHAR

You should set ATTR_DATA_TYPE before you set any other value attribute such as
ATTR_CTRL_VAL, ATTR_MAX_VALUE, ATTR_MIN_VALUE, and others.

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-51 LabWindows/CVI User Interface Reference

Table 3-12 contains the numeric formats you can use with ATTR_FORMAT.

Table 3-12. Numeric Formats

Numeric Formats Example

VAL_FLOATING_PT_FORMAT 123.000

VAL_SCIENTIFIC_FORMAT 1.23E+2

VAL_ENGINEERING_FORMAT 123.00E+0

VAL_DECIMAL_FORMAT* 123

VAL_HEX_FORMAT* 7B

VAL_OCTAL_FORMAT* 173

VAL_BINARY_FORMAT* 1111011

* not valid for graphs and strip charts

The ATTR_CHECK_RANGE attribute establishes the behavior of LabWindows/CVI when you
try to set a control to a value outside of its specified range. The three possible attribute values are
shown in the following table.

Table 3-13. ATTR_CHECK_RANGE Values

Numeric Formats LabWindows/CVI Action

VAL_COERCE The value is coerced to the upper or
lower range boundary, whichever is
closer.

VAL_IGNORE The value remains unchanged.

VAL_NOTIFY The user interface operator is
notified with an Out of Range
dialog box when the control is
active.

Programming with Picture Controls

This section describes the simple picture control and the picture control versions of command
buttons, toggle buttons, and ring controls onto which you can place images. Picture controls can
help users understand your GUI more quickly and can be used to display useful diagrams or

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-52 © National Instruments Corporation

charts. Picture controls can include logos and other images that match the style of your
organization.

You can use commit events on any picture control in your program. However, the simple picture
control is best suited for displaying images only. The other picture controls have a powerful
editing window that helps you quickly set their appearance and their behavior in response to user
events.

The following image formats work with picture controls:

• PCX (Windows and UNIX)

• BMP, DIB, RLE, ICO (Windows only)

• WMF (Windows 95 and NT only)

• XWD (UNIX only)

Simple Picture Control

You access the simple picture control through the Picture menu item in the Create menu.
Alternatively, you can right-click on a panel in a .uir file and select Picture from the pop-up
menu that appears. It allows you to place images on panels, such as logos and diagrams.

You can program the simple picture control to recognize user events, but it does not
automatically change appearance in response to the event. The simple picture control can also
serve as an indicator that, for example, is dim at startup and becomes fully colored at some point
during run-time. You can programatically change the contents of a picture control by calling
SetCtrlAttribute with the ATTR_IMAGE_FILE attribute.

Picture Control Attributes

You access the picture command button, picture toggle button, and picture ring control under the
Control menu, within the sub-menus Command Button, Toggle Button, and Ring. The picture
versions of these controls have nearly all the features of other controls.

You can use the SetCtrlVal function to change the image in a picture button or picture ring,
when, for example, you want to simulate a mouse click. For picture ring controls, you also can
use the SetCtrlIndex function to change the image.
You can use the SetCtrlBitmap function to select images directly from memory, instead of
through a path to a standard image filename. SetCtrlBitmap is an alternative to
ATTR_IMAGE_FILE, DisplayImageFile and ReplaceListItem . For more
information, see the Using Bitmap Objects section in this chapter.

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-53 LabWindows/CVI User Interface Reference

Appearance of Picture Controls

The picture controls appear on screen like other controls, with the following minor differences.

• Picture command buttons and picture toggle buttons have an external label only.

• In picture command buttons and picture toggle buttons, the background color of your buttons
may not be visible, depending on the size of your image and the Fit Mode you choose. When
the background color of a button is not visible, users do not see the color shift that normally
takes place in response to a mouse click. However, they do see two smaller changes in the
button: the image moves down and over several pixels, and the colors of the border around
the button change. You can give these controls more visual impact by making the
background of the control visible and coloring it appropriately.

• In a picture ring control, you cannot click on one of the images and view all the selections at
once. However, as with other ring controls, you can cycle through the options in the ring
control by using increment/decrement arrows.

Giving Picture Controls More Visual Impact

Whether the state of the control is on, off, or “clicked-on with the mouse,” users see the same
image. If you want your picture control to reflect its state more vividly, make the background
area of the control visible by choosing the Fit Modes Stick Image to Corner or Center Image
when you paste the image into the control. As long as your image is smaller than the size of
your control, the image has a visible background area that you can color vividly to call attention
to the state of a picture control. Either resize the control or resize the image until enough
background appears on your control.

Programming with Canvas Controls

Use a canvas control to add an arbitrary drawing surface to your project. You can draw text,
shapes, and bitmap images. This section describes how you can use the User Interface Library
functions and attributes with canvas controls.

Functions for Drawing on Canvas

Use the following functions to draw on a canvas.

• CanvasDrawPoint to draw a point.

• CanvasDrawLine to draw a line.

• CanvasDrawLineTo to draw a line from the current pen position.

• CanvasDrawRect to draw a rectangle.

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-54 © National Instruments Corporation

• CanvasDimRect to overlay a checkerboard pattern in a rectangular area.

• CanvasDrawRoundedRect to draw a rectangle with rounded corners.

• CanvasDrawOval to draw an oval.

• CanvasDrawArc to draw an arc.

• CanvasDrawPoly to draw a polygon.

• CanvasDrawText to draw text within a rectangular area.

• CanvasDrawTextAtAPoint to draw text at an anchor point.

• CanvasDrawBitmap to draw a bitmap image.

• CanvasScroll to scroll a rectangular area.

• CanvasInvertRect to invert the colors in a rectangular area.

• CanvasClear to restore a rectangular area to the canvas background color.

Batch Drawing

Although, the drawing functions can be called at any time, they are most efficient when called
from within a batch drawing operation. A batch drawing operation consists of a call to
CanvasStartBatchDraw , followed by one or more calls to the canvas drawing functions,
followed by a call to CanvasEndBatchDraw .

For optimal performance, users are encouraged to include as many drawing primitives as
possible within a batch drawing operation. When a drawing function is called outside of a batch
operation, the function is implicitly surrounded by calls to CanvasStartBatchDraw and
CanvasEndBatchDraw .

Canvas Coordinate System

A canvas has a built-in pixel-based Cartesian coordinate system, where (0,0) represents the top,
left corner of the canvas. All drawing is specified relative to this coordinate system. The
coordinate system can be modified using the following four attributes:

ATTR_CANVAS_XCOORD_AT_ORIGIN
ATTR_CANVAS_YCOORD_AT_ORIGIN
ATTR_CANVAS_XSCALING
ATTR_CANVAS_YSCALING

All canvas control functions use this coordinate system, except for CanvasGetPixel and
CanvasGetPixels , which use unscaled pixel coordinates rather than the canvas coordinate
system.

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-55 LabWindows/CVI User Interface Reference

Offscreen Bitmap

Each canvas has an offscreen bitmap which is used to restore the appearance of the canvas when
the region is exposed. You can choose to draw directly to the screen, bypassing the offscreen
bitmap. If you draw to the offscreen bitmap, you can choose whether to update the screen
immediately or wait until draw events are processed. This is controlled by the
ATTR_DRAW_POLICY attribute.

The CanvasUpdate function immediately copies the canvas offscreen bitmap to the screen,
within a specified rectangular area.

The ATTR_OVERLAP_POLICY attribute controls what occurs when you draw to a canvas
which is overlapped by another control.

Clipping

The drawing functions are constrained by the clipping set using CanvasSetClipRect . Any
drawing outside the clipping rectangle is not rendered. You can obtain the current clipping
rectangle by calling CanvasSetClipRect.

Background Color

The background color of the canvas is controlled by the ATTR_PICT_BGCOLOR attribute.
When ATTR_PICT_BGCOLOR is changed, the entire canvas area is cleared.

Pens

Each canvas has a pen. The canvas pen attributes can be set individually using
SetCtrlAttribute . They are:

ATTR_PEN_WIDTH
ATTR_PEN_STYLE
ATTR_PEN_COLOR
ATTR_PEN_FILL_COLOR
ATTR_PEN_MODE
ATTR_PEN_PATTERN

The CanvasDefaultPen function resets all these attributes to their default values.

The location of the pen affects the starting position of the line drawn by the
CanvasDrawLineTo function. The location of the pen is affected only by the
CanvasSetPenPosition and the CanvasDrawLineTo functions. You can obtain the
location of the pen by calling CanvasGetPenPosition .

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-56 © National Instruments Corporation

Pixel Values

You can obtain the color values of pixels in the canvas. Call CanvasGetPixel to obtain the
color of one pixel. Call CanvasGetPixels to obtain the values of the pixels within a
rectangular area. The color values are obtained from the offscreen bitmap, not the screen.

Unlike other canvas control functions, CanvasGetPixel and CanvasGetPixels use
unscaled pixel coordinates rather than the canvas coordinate system.

Canvas Attribute Discussion

The following table lists the attributes for Canvas Controls.

Table 3-14. Control Attributes for Canvas Controls

Name Type Description

ATTR_DRAW_POLICY int Determines when drawing operations are
rendered on the offscreen bitmap and the
screen. See discussion that follows this
table.

ATTR_OVERLAPPED_POLICY int Determines what occurs when you draw to a
canvas which is overlapped by another
control. See discussion that follows this
table.

ATTR_PEN_COLOR int The RGB color value used to draw points,
lines, frames, and text on the canvas.

ATTR_PEN_FILL_COLOR int The RGB color value used to fill interior
areas of shapes, text backgrounds, and areas
exposed by scrolling.

ATTR_PEN_MODE int Determines the effect of drawing with the
pen color (or pen fill color), given the
current color on the screen. See discussion
following this table.

ATTR_PEN_PATTERN unsigned
char[8]

Determines the pattern used to fill interior
areas of shapes. See discussion following
this table.

ATTR_PEN_STYLE int The style used when drawing lines and
frames. In Windows, applies only if pen
width is 1; if pen width is greater than 1, the
style is always VAL_SOLID. See
Table 3-23.

(continues)

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-57 LabWindows/CVI User Interface Reference

Table 3-14. Control Attributes for Canvas Controls (Continued)

Name Type Description

ATTR_PEN_WIDTH int The number of pixels in the width of a pen
stroke. Applies to lines, frames, and points.
Valid range: 1 to 255. Default: 1.

ATTR_XCOORD_AT_ORIGIN double The horizontal coordinate mapped to the
left edge of the canvas. (Is multiplied by
ATTR_XSCALING to arrive at a pixel
offset.) Default value: 0.0.

ATTR_XSCALING double The factor used to scale user-supplied
horizontal coordinates and widths into
pixel-based coordinates and widths.
Default value: 1.0.

ATTR_YCOORD_AT_ORIGIN double The vertical coordinate mapped to the top
edge of the canvas. (Is multiplied by
ATTR_YSCALING to arrive at a pixel
offset.) Default value: 0.0.

ATTR_YSCALING double The factor used to scale user-supplied
vertical coordinates and heights into pixel-
based coordinates and heights. Default
value: 1.0.

The following table lists the values associated with the ATTR_DRAW_POLICY attribute.

Table 3-15. Values for ATTR_DRAW_POLICY

Value Description

VAL_UPDATE_IMMEDIATELY Drawing takes place offscreen. The section of the bitmap
corresponding to the area of the drawing operation is copied into
the canvas display immediately. (This is the default.)

VAL_MARK_FOR_UPDATE Drawing takes place offscreen. The area on the canvas
corresponding to the area of the drawing operation is marked for
update. The new drawing becomes visible when draw events are
processed.

VAL_DIRECT_TO_SCREEN Drawing goes directly to the screen. The offscreen bitmap is not
updated. Although this may result in a faster drawing time,
whatever is drawn in this mode is lost when the canvas is
redrawn.

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-58 © National Instruments Corporation

The following table lists the values associated with the ATTR_OVERLAPPED_POLICY
attribute.

Table 3-16. Values for ATTR_OVERLAPPED_POLICY

Value Description

VAL_DEFER_DRAWING If the control is overlapped and the draw policy is
VAL_UPDATE_IMMEDIATELY, new drawing does not become
visible until draw events are processed. If the draw policy is
VAL_DIRECT_TO_SCREEN, no drawing takes place at all. (This is
the default.)

VAL_DRAW_ON_TOP If the control is overlapped and the draw policy is not
VAL_MARK_FOR_UPDATE, drawing occurs on top of the
overlapping controls.

The ATTR_PEN_MODE attribute determines the effect of drawing with the pen color (or pen fill
color), given the current color on the screen. With the default setting, VAL_COPY_MODE, the
current screen color is replaced with the pen color (or pen fill color). The other settings specify
bitwise logical operations on pen color (or pen fill color) and the screen color.

Note: If a system color palette is in use, the logical operations might be performed on the
palette indices rather than the RGB values, depending on the operating system.

The following table lists the values associated with the ATTR_PEN_MODE attribute.

Table 3-17. Values for ATTR_PEN_MODE

Value Description

VAL_COPY_MODE pen color (the default)

VAL_OR_MODE pen color | screen color

VAL_XOR_MODE pen color ^ screen color

VAL_AND_NOT_MODE ~(pen color) & screen color

VAL_NOT_COPY_MODE ~(pen color)

VAL_OR_NOT_MODE ~(pen color) | screen color

VAL_NOT_XOR_MODE ~(pen color ^ screen color)

VAL_AND_MODE pen color & screen color

The ATTR_PEN_PATTERN attribute determines the pattern used to fill interior areas of shapes.
The value is an 8-byte unsigned character array representing a repeating 8-by-8 grid of pixels
through which filling operations are filtered. A pixel of value 1 means that the pen fill color is

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-59 LabWindows/CVI User Interface Reference

used for that pixel. A pixel value of 0 means that black is used for that pixel. The default value
for the attribute is the solid pattern, in which each byte of the array is 0xFF.

To make a pixel value of 0 mean "screen color" instead of "black", do the following.

1. Set ATTR_PEN_PATTERN to the complement of the pattern you wish to use.

2. Set ATTR_PEN_MODE to VAL_AND_MODE.

3. Set ATTR_PEN_FILL_COLOR to VAL_WHITE.

4. Use a canvas draw function, (for example, CanvasDrawRect) to fill the area.

5. Set ATTR_PEN_PATTERN to the desired pattern.

6. Change the ATTR_PEN_MODE to VAL_OR_MODE.

7. Change the ATTR_PEN_FILL_COLOR to the desired pattern color.

8. Draw again.

Using Rect and Point Structures

Two structures, Rect and Point are defined in the userint.h include file. These structures
are used to specify locations and areas in Cartesian coordinate systems, such as those used in
canvas controls and bitmaps. Many canvas control functions use these structures.

The Rect structure specifies the location and size of a rectangle. It is defined as follows.

typedef struct
 {
 int top;
 int left;
 int height;
 int width;
 } Rect;

A Point structure specifies the location of a point. It is defined as follows.

typedef struct
 {
 int x;
 int y;
 } Point;

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-60 © National Instruments Corporation

Functions and Macros for Making Rects and Points

You might need to create a Rect or Point just to pass it to a function. You can avoid creating
a variable for this by using one of the following functions.

Rect MakeRect (int top, int left, int height, int width);
Point MakePoint (int x, int y);

For example,

CanvasDrawPoint (panel, ctrl, MakePoint (30, 40));

You can also use these function to initialize variables. For example,

Rect r = MakeRect (10, 20, 100, 130);

There are special values for the Rect height and width. Also, there are some macros for
creating commonly used rectangles. The documentation for each function indicates when these
values and macros are applicable. See the following table.

Table 3-18. Values and Macros for Rect Structures

Name Value or Definition Description

VAL_TO_EDGE -1 Set the Rect width (or height) to the
distance from the Rect left (or top) to
the right (or bottom) edge of the object.

VAL_KEEP_SAME_SIZE -2 When copying objects (such as
bitmaps), make the destination object
the same size as the source object.

VAL_EMPTY_RECT MakeRect (0, 0, 0, 0) An empty rectangle.

VAL_ENTIRE_OBJECT MakeRect (0, 0,
 VAL_TO_EDGE,
 VAL_TO_EDGE)

Make the Rect the size of the object
(for example, the canvas or bitmap).

Functions for Modifying Rects and Points

Use the following functions to set or modify the values in a Rect or Point structure.

• RectSet to set each of the four values of an existing Rect structure.

• RectSetFromPoints to set a Rect so that it defines the smallest rectangle that encloses
two points.

• RectSetBottom to set the height of a Rect so that the bottom is a given value. (The
bottom is not enclosed by the rectangle.)

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-61 LabWindows/CVI User Interface Reference

• RectSetRight to set the height of a Rect so that the right edge is a given value. (The
right edge is not enclosed by the rectangle.)

• RectSetCenter to set the top and left of a Rect so that it is centered around a give
value, while keeping the same size.

• RectOffset to modify the top and left of a Rect so as to shift the location of the
rectangle.

• RectMove to set the top and left of Rect to a given Point .

• RectGrow to modify the values in a Rect so that the rectangle grows or shrinks around its
current center point.

• PointSet to set the two values in an existing Point structure.

Functions for Comparing or Obtaining Values from Rects and Points

Use the following functions to compare or obtain values from a Rect or Point structure.

• RectBottom to obtain the location of the bottom of a rectangle.

• RectRight to obtain the location of the right edge of a rectangle.

• RectCenter to obtain the location of the center of a rectangle.

• RectEqual to determine if two rectangles are identical.

• RectEmpty to determine if a rectangle is empty.

• RectContainsPoint to determine if a rectangle encloses a given point.

• RectContainsRect to determine if a rectangle completely encloses another rectangle.

• RectSameSize to determine if two rectangles are the same size.

• RectUnion to set a Rect to the smallest rectangle that encloses two given rectangles.

• RectIntersection to set a Rect to the largest rectangle that is enclosed by two given
rectangles.

• PointEqual to determine if two points are at the same location.

• PointPinnedToRect to modify a Point structure, if needed, to ensure that it is within a
give rectangle.

Using Bitmap Objects

A bitmap is a two-dimensional grid of pixels representing an image. There are some functions,
such as PlotBitmap (for graph controls) and DisplayImageFile (for picture controls)
which read an image out of a file and directly display it on a control.

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-62 © National Instruments Corporation

There are other functions, however, which create or extract a bitmap, store them in memory, and
return a bitmap ID. You can then use the bitmap ID in other functions.

Functions for Creating, Extracting, or Discarding Bitmap Objects

Use the following functions to create, extract, or discard bitmap objects.

• NewBitmap to create a bitmap object from scratch.

• GetBitmapFromFile to create a bitmap object using image data read from a file.

• GetCtrlBitmap to create a bitmap object from an image contained in a picture, picture
ring, picture button, canvas, or graph control.

• GetCtrlDisplayBitmap to create a bitmap object from the current appearance of a
control.

• GetPanelDisplayBitmap to create a bitmap object from the current appearance of a
specified rectangular area of a panel.

• ClipboardGetBitmap to create a bitmap object from an image (if any) in the system
clipboard

• DiscardBitmap to remove a bitmap from memory.

If you want to display images that are not rectangular or that have “holes” in them, you can use
bitmaps that have a transparent background. If you are creating your bitmap image from scratch,
you can achieve transparency by using the mask parameter to the NewBitmap function.

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-63 LabWindows/CVI User Interface Reference

Windows Metafiles

A Windows metafile (.WMF) contains a description of an image that is scaleable without
distortion. The description consists of a set of drawing commands rather than a bitmap.
Windows metafiles are available only on Windows 95 and NT. You can load them using the
GetBitmapFromFile function.

Functions for Displaying or Copying Bitmap Objects

Use the following functions to display a bitmap object in a control or copy an image from a
bitmap object to a control.

• CanvasDrawBitmap to display a bitmap in a canvas control.

• SetCtrlBitmap to set an image in a picture, picture ring, picture button, or graph control
from a bitmap object. Can be used to replace an existing image create a new image.

• ClipboardPutBitmap to copy image data from a bitmap object to the system clipboard.

Functions for Retrieving Image Data from Bitmap Objects

Use the following functions to retrieve image data from bitmap objects.

• GetBitmapInfo to obtain size information about the image associated with a bitmap. This
information can then be used in allocating the buffers to be passed to GetBitmapData .

• AllocBitmapData to allocate the buffers necessary for calling GetBitmapData . This
is an alternative to calling GetBitmapInfo and allocating the buffers yourself.

• GetBitmapData to obtain the bit values that define the image associated with a bitmap.

Programming with Timer Controls

This section describes the functions and attributes that you can use to manipulate timer control
activity.

Timer Control Functions

You can create timer controls with the User Interface Editor or by using the function NewCtrl .
There is no limit to the number of timer controls you can use, but timer callbacks are called
sequentially. If two or more timers have identical time intervals, their callbacks are called in an
undefined, but consistent order.

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-64 © National Instruments Corporation

Use SuspendTimerCallbacks to stop calls to all the timer control callbacks until
ResumeTimerCallbacks restores timer control activity. These functions do not affect the
interval schedules or set the enabled/disabled state of individual timer controls, but rather
activate and deactivate a blanket suspension over all timer callbacks.

Use ResetTimer to reset the interval start times of individual timer controls, all timer controls
on a panel, or all timer controls on all panels.

Using Timer Callbacks

The timer callback has the same prototype as other control callbacks.

int CVICALLBACK timerfunc (int panel, int control, int event,
void * callbackData, int eventData1,
int eventData2)

eventData1 is a pointer to a double that represents the current time in seconds. The time
base is the same as that used by the Timer function in the Utility Library. eventData2 is a
pointer to a double that represents the time that has elapsed since the last call to the timer
callback. The elapsed time is set to zero if the callback has not been called previously.

When the callback function is called at the end of an interval, event is EVENT_TIMER_TICK.

Timer Control Attributes

Table 3-19 lists the timer control attributes you can retrieve or change using
SetCtrlAttribute and GetCtrlAttribute .

Table 3-19. Timer Control Attributes

Name Type Description

ATTR_INTERVAL double The time interval of the timer control in seconds.

ATTR_ENABLED int 0 = timer control is disabled
1 = timer control is enabled

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-65 LabWindows/CVI User Interface Reference

Timer Control Attribute Discussion

ATTR_INTERVAL sets the time interval of the timer control in seconds. An interval of zero
results in timer events occurring as fast as CVI can generate them. Setting the interval less than
the system clock resolution results in an interval equivalent to the system clock resolution. If the
timer has already been started, setting ATTR_INTERVAL resets the timer. The
ATTR_INTERVAL default value is one second.

Note: The time intervals you specify are minimum values. System activity, including
processing of user callbacks, can cause timer callbacks to be late or skipped. If you
have a need for real time response, do not write into your program operations that take
significant amounts of time without giving CVI a chance to process events.

ATTR_ENABLED determines whether a timer control’s callback is called at each interval. The
ATTR_ENABLED default value is TRUE.

Details of Timer Control Operations

After a timer control is created or loaded, the timer does not start until a call is made to
RunUserInterface , GetUserEvent , or ProcessSystemEvents . This ensures that
you can create or load several timer controls and have them start at the same time.

The timer interval schedules are not affected by SuspendTimerCallbacks ,
ResumeTimerCallbacks , or by changing the value of ATTR_ENABLED. You can reset
timer interval schedules by calling ResetTimer . The length of the timer intervals can be
changed using the ATTR_INTERVAL attribute. Changing the ATTR_INTERVAL value also
causes the interval schedule for the timer control to be reset.

Timer callbacks are not called unless a call to RunUserInterface , GetUserEvent , or
ProcessSystemEvents is in effect. Calling RunUserInterface , GetUserEvent ,
and ProcessSystemEvents does not alter interval schedules already in effect, but may
trigger an overdue callback. If, upon calling one of these functions, the time since the last
callback is greater than the ATTR_INTERVAL value for a timer control, the callback is called.
Only one such overdue callback is called no matter how many intervals have elapsed. Overdue
callbacks do not cause the next interval to be rescheduled. Thus, the time between the overdue
callback and the next regularly scheduled callback may be less than the ATTR_INTERVAL
value.

Calling ResumeTimerCallbacks or setting ATTR_ENABLED to TRUE does not trigger
overdue callbacks.

Programming with Graph and Strip Chart Controls

This section describes how you can use the User Interface Library functions to control the
elements of user interface graphs and strip charts.

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-66 © National Instruments Corporation

Functions for Graphs and Strip Charts

As with any other control, you can create graphs and strip charts in the User Interface Editor or
programmatically using NewCtrl . For details, see the Programming with Controls section of
this chapter. You also use GetCtrlAttribute and SetCtrlAttribute to control the
attributes of graphs and strip charts. The following functions are provided to programmatically
change the axis ranges of graphs and strip charts and to change the scaling mode.

Use GetAxisRange to obtain the current x and y axis ranges of a graph or strip chart control.

Use SetAxisRange to set the current x and y axis ranges of a graph or strip chart control.

Functions for Graphs Only

Use one of the following functions to add a plot to a graph.

• Use PlotArc to plot an arc.

• Use PlotBitmap to plot a bitmap image.

• Use PlotIntensity or PlotScaledIntensity to plot a color-intensity graph.

• Use PlotLine to plot a single line segment.

• Use PlotOval to plot an oval.

• Use PlotPoint to plot a point.

• Use PlotPolygon to plot a polygon.

• Use PlotRectangle to plot a rectangle.

• Use PlotText to plot a text string.

• Use PlotWaveform to plot a waveform array.

• Use PlotX to plot X versus its indices.

• Use PlotXY to plot X versus Y.

• Use PlotY to plot Y versus its indices.

If the graph is visible, the program draws the plot immediately.

Use DeleteGraphPlot to remove one or all plots from a graph. DeleteGraphPlot frees
the appropriate plots from memory.

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-67 LabWindows/CVI User Interface Reference

Use GetPlotAttribute to obtain an attribute of a particular graph plot.

Use SetPlotAttribute to set an attribute of a particular graph plot.

Use one of the following functions to control the cursors in a graph.

• Use GetGraphCursor to obtain the current position of a specified cursor.

• Use SetGraphCursor to set the position of a specified cursor.

• Use GetGraphCursorIndex to obtain the plot handle and the array index of the plot that
the specified cursor is attached to.

• Use SetGraphCursorIndex to attach a cursor to a particular data point.

• Use GetActiveGraphCursor to obtain the index of the active graph cursor.

• Use SetActiveGraphCursor to set the active graph cursor.

• Use GetCursorAttribute to obtain an attribute of a specified cursor.

• Use SetCursorAttribute to an attribute of a specified cursor.

Functions for Strip Charts Only

• Use PlotStripChart to add one or more points to the strip chart traces. If the strip chart
is visible, the points are drawn as you add them to each trace.

• Use PlotStripChartPoint to add one point to a strip chart that contains exactly one
trace.

• Use ClearStripChart to clear all points from the strip chart. If the strip chart is visible,
the points on the plot clear.

• Use GetTraceAttribute to obtain an attribute of a particular strip chart trace

• Use SetTraceAttribute to set an attribute of a particular strip chart trace.

Processing Graph and Strip Chart Events

Graph events are processed like any other control. See the Processing Control Events section of
this chapter for details of graph event processing. When the user moves a cursor on a graph a
commit event is generated.

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-68 © National Instruments Corporation

Because strip charts do not generate commit events, you can only process events from a strip
chart through a callback function. See the Processing Control Events section of this chapter for
details about processing events using callbacks.

Graph and Strip Chart Attributes

Table 3-20 lists control attributes you can access through GetCtrlAttribute and
SetCtrlAttribute .

Table 3-20. Graph and Strip Chart Attributes

For graphs and strip charts

Name Type Description

ATTR_BORDER_VISIBLE int 1 = border visible
0 = border invisible

ATTR_EDGE_STYLE int VAL_RAISED_EDGE or VAL_FLAT_EDGE
or VAL_RECESSED_EDGE

ATTR_GRAPH_BGCOLOR int Graph border background color (RGB
value—see discussion that follows this
table).

ATTR_GRID_COLOR int Grid color (RGB value—see discussion that
follows this table).

ATTR_INNER_LOG_MARKERS_
VISIBLE

int Specifies whether labels and tick marks are
shown next to the inner grid lines of log scale
axes.
(Default value: FALSE)

ATTR_PLOT_AREA_HEIGHT int The height of the plotting area in pixels
(GetCtrlAttribute only).

ATTR_PLOT_AREA_WIDTH int The width of the plotting area in pixels
(GetCtrlAttribute only).

ATTR_PLOT_BGCOLOR int Plot background color (RGB value—see
discussion that follows this table).

(continues)

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-69 LabWindows/CVI User Interface Reference

For graphs and strip charts (Continued)

Name Type Description

ATTR_XAXIS_GAIN double The factor used to scale the value labels on the
X axis. For example, if the X value is 10.0
and ATTR_XAXIS_GAIN is 2.0, then the
label on the X axis shows as 20.0.
(Default value: 1.0)

ATTR_XAXIS_OFFSET double The amount added to the value labels on the X
axis. For example, if the X value is 10.0 and
ATTR_XAXIS_OFFSET is 5.0, then the label
on the X axis shows as 15.0. The X value is
multiplied by ATTR_XAXIS_GAIN before
ATTR_XAXIS_OFFSET is added.
(Default value: 0.0)

ATTR_XDIVISIONS int (1 to 100, or VAL_AUTO)

ATTR_XENG_UNITS int (-308 to 308)

ATTR_XFORMAT int See Table 3-12.

ATTR_XGRID_VISIBLE int 1 = x-grid visible
0 = x-grid invisible

ATTR_XLABEL_VISIBLE int 1 = x-label visible
0 = x-label invisible

ATTR_XNAME char * x-axis name.

ATTR_XUSE_LABEL_STRINGS int Whether the X axis numerical value labels are
replaced by strings associated with the X
values. These strings can be specified either in
the User Interface Editor or by calling the
InsertAxisItem function.

ATTR_YAXIS_GAIN double The factor used to scale the value labels on
the Y axis. For example, if the Y value is
10.0 and ATTR_YAXIS_GAIN is 2.0, then
the label on the Y axis shows as 20.0.
(Default value: 1.0)

(continues)

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-70 © National Instruments Corporation

For graphs and strip charts (Continued)

Name Type Description

ATTR_YAXIS_OFFSET double The amount added to the value labels on the
Y axis. For example, if the Y value is 10.0
and ATTR_YAXIS_OFFSET is 5.0, then the
label on the Y axis shows as 15.0. The Y
value is multiplied by ATTR_YAXIS_GAIN
before ATTR_YAXIS_OFFSET is added.
(Default value: 0.0)

ATTR_YAXIS_REVERSE int Whether to reverse the orientation of the Y
axis so that the lowest value is shown at the
top. If the orientation of the Y axis is
reversed, the vertical orientation of the plots
is also reversed.

ATTR_YUSE_LABEL_STRINGS int Whether the Y axis numerical value labels
are replaced by strings associated with the Y
values. These strings can be specified either
in the User Interface Editor or by calling the
InsertAxisItem function.

ATTR_XNAME_LENGTH int Number of characters in x-axis name;
GetCtrlAttribute only.

ATTR_XPRECISION int (0 to 15, or VAL_AUTO)

ATTR_XYLABEL_BOLD int 1 = x & y axes labels bold
0 = x & y axes labels not bold

ATTR_XYLABEL_COLOR int x- and y-axis label color (RGB value—see
discussion that follows this table).

ATTR_XYLABEL_FONT char * x- and y-axis label font (see Table 3-5).

ATTR_XYLABEL_FONT_NAME_LENGTHint Number of characters in font of x & y-axis
labels; GetCtrlAttribute only.

ATTR_XYLABEL_ITALIC int 1 = x & y axes labels in italics
0 = x & y axes labels not in italics

(continues)

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-71 LabWindows/CVI User Interface Reference

For graphs and strip charts (Continued)

Name Type Description

ATTR_XYLABEL_POINT_SIZE int Point size of x & y axis names;
range = 0 to 32767.

ATTR_XYLABEL_STRIKEOUT int 1 = x & y axes labels have strikeout
0 = x & y axes labels do not have strikeout

ATTR_XYLABEL_UNDERLINE int 1 = x & y axes labels underlined
0 = x & y axes labels not underlined

ATTR_XYNAME_BOLD int 1 = x & y axes names bold
0 = x & y axes names not bold

ATTR_XYNAME_COLOR int x- and y-axis name color (RGB value - see
discussion that follows this table).

ATTR_XYNAME_FONT char * x- and y-axis name font (see Table 3-5).

ATTR_XYNAME_FONT_NAME_LENGTHint Number of characters in font of x & y-axis
names; GetCtrlAttribute only.

ATTR_XYNAME_ITALIC int 1 = x & y axes names in italics
0 = x & y axes names not in italics

ATTR_XYNAME_POINT_SIZE int Point size of x & y axes names
range = 0 to 32767.

ATTR_XYNAME_STRIKEOUT int 1 = x & y axes names have strikeout
0 = x & y axes names do not have strikeout

ATTR_XYNAME_UNDERLINE int 1 = x & y axes names underlined
0 = x & y axes names not underlined

ATTR_YDIVISIONS int Range: 1 to 100, or VAL_AUTO

ATTR_YENG_UNITS int Range: -308 to 308

ATTR_YFORMAT int See Table 3-12.

(continues)

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-72 © National Instruments Corporation

For graphs and strip charts (Continued)

Name Type Description

ATTR_YGRID_VISIBLE int 1 = y-grid visible
0 = y-grid invisible

ATTR_YLABEL_VISIBLE int 1 = y-label visible
0 = y-label invisible

ATTR_YMAP_MODE int VAL_LINEAR or VAL_LOG

ATTR_YNAME char * y-axis name

ATTR_YNAME_LENGTH int Number of characters in y-axis name
GetCtrlAttribute only.

ATTR_YPRECISION int Range: 0 to 15, or VAL_AUTO

For graphs only

Name Type Description

ATTR_ACTIVE_YAXIS int Which of the two Y axes is used in plotting,
setting a Y axis attribute, setting the Y axis
range, or creating a graph cursor.
Values: VAL_LEFT_YAXIS,
VAL_RIGHT_YAXIS.

ATTR_COPY_ORIGINAL_DATA int See discussion below this table.

ATTR_DATA_MODE int VAL_RETAIN or VAL_DISCARD (see
discussion that follows this table).

ATTR_ENABLE_ZOOMING int Whether the end-user can interactively zoom
and pan the graph viewport.

Default: FALSE

ATTR_NUM_CURSORS int Number of cursors (0 to 10).

ATTR_REFRESH_GRAPH int 1 = plot to screen immediately
0 = do not plot to screen until graph is
rescaled, overlapped, hidden, or
ATTR_REFRESH_GRAPH = 1

(continues)

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-73 LabWindows/CVI User Interface Reference

For graphs only (Continued)

Name Type Description

ATTR_SHIFT_TEXT_PLOTS int 1 = text is shifted so it will not be clipped
0 = text is shifted do it may be clipped

ATTR_SMOOTH_UPDATE int 1 = use off-screen bitmap
0 = do not use off-screen bitmap
(See discussion that follows this table.)

ATTR_XMAP_MODE int VAL_LINEAR or VAL_LOG.

ATTR_XMARK_ORIGIN int 1 = tick marks along x-origin
0 = no tick marks along x-origin

ATTR_XREVERSE int Whether to reverse the orientation of the X
axis so that the lowest value is shown at the
right. If the orientation of the X axis is
reversed, the horizontal orientation of the
plots is also reversed.

ATTR_YMARK_ORIGIN int 1 = tick marks along y-origin
0 = no tick marks along y-origin

For strip charts only

Name Type Description

ATTR_NUM_TRACES int Number of traces (1-64).

ATTR_POINTS_PER_SCREEN int Range: 3 to 10000

ATTR_SCROLL_MODE int VAL_SWEEP or VAL_CONTINUOUS or
VAL_BLOCK
(See discussion that follows this table.)

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-74 © National Instruments Corporation

For graph cursors (GetCursorAttribute and SetCursorAttribute)

Name Type Description

ATTR_CROSS_HAIR_STYLE int See Table 3-21.

ATTR_CURSOR_COLOR int Cursor color (RGB value—see discussion
that follows this table.)

ATTR_CURSOR_MODE int VAL_FREE_FORM or
VAL_SNAP_TO_POINT
(See discussion that follows this table.)

ATTR_CURSOR_POINT_STYLE int See Table 3-22.

ATTR_CURSOR_YAXIS int Used to change the Y axis to which a graph
cursor is associated. When you create a
graph cursor, its associated Y axis is
determined by the value of
ATTR_ACTIVE_YAXIS.
Afterwards, the association can be changed
using ATTR_CURSOR_YAXIS. The
associated axis serves as the reference for the
cursor position coordinates used in calls to
SetGraphCursor and
GetGraphCursor .
Values: VAL_LEFT_YAXIS,
VAL_RIGHT_YAXIS.

For graph plots (GetPlotAttribute and SetPlotAttribute) and
for strip chart traces (GetTraceAttribute and SetTraceAttribute)

Name Type Description

ATTR_LINE_STYLE int See Table 3-23.

ATTR_PLOT_STYLE int See Table 3-24.

ATTR_TRACE_COLOR int Trace color (RGB value—see discussion that
follows this table).

ATTR_TRACE_POINT_STYLE int See Table 3-22.

ATTR_TRACE_VISIBLE int 1 = trace is visible; 0 = trace is invisible

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-75 LabWindows/CVI User Interface Reference

For graph plots (GetPlotAttribute and SetPlotAttribute)

Name Type Description

ATTR_INTERPOLATE_PIXELS int Enable the calculation of the displayed color
for each pixel by using interpolation.
n 0 = Interpolate pixels
1 = No Interpolation
(Valid for Intensity plots only.)

ATTR_NUM_POINTS int Number of points in the plot data. For
intensity plots, the number of points will be
equal to the number of points in the 2
dimensional z-data array (valid for X, Y, XY,
Waveform, Polygon and Intensity plots
only). (GetPlotAttribute only.)

ATTR_PLOT_FONT char * The font name for the text plot (valid for
PlotText plots only).

ATTR_PLOT_FONT_NAME_LENGTHint The length of the font name for the text plot
(valid for PlotText plots only).
(GetPlotAttribute only.)

ATTR_PLOT_ORIGIN int Determines the placement of a text string or
bitmap with respect to the coordinates
specified in a call to PlotText or
PlotBitmap . See discussion following this
table.

ATTR_PLOT_SNAPPABLE int By default, graph cursors for which
ATTR_CURSOR_MODE is
VAL_SNAP_TO_POINT snap to the closest
plot. To prevent cursors from snapping to a
particular plot, set
ATTR_PLOT_SNAPPABLE for the plot to
FALSE.

ATTR_PLOT_YAXIS int Used to change the Y axis with which a plot is
associated. When a plot is first plotted, the Y
axis to which it is associated is determined by
the value of ATTR_ACTIVE_YAXIS.

Afterwards, the association can be changed
using ATTR_PLOT_YAXIS.
Values: VAL_LEFT_YAXIS,
VAL_RIGHT_YAXIS.

(continues)

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-76 © National Instruments Corporation

For graph plots (GetPlotAttribute and SetPlotAttribute) (Continued)

Name Type Description

ATTR_PLOT_ZPLANE_POSITION int The drawing order of the graph plot. The
lowest ordered plot(0) is on top. Valid
Range: 0 to (Number of Plots - 1)

ATTR_TRACE_BGCOLOR int The RGB color value for the background text
of a text plot or the fill color for drawn object
type plot (valid for Text, Rectangle, Polygon,
Oval and Arc plots only).

ATTR_PLOT_XDATA void * A void pointer to a buffer for the X data to be
copied to. (Valid for X, XY and Polygon
plots only.) (GetPlotAttribute only.)

ATTR_PLOT_YDATA void * A void pointer to a buffer for the Y data to be
copied to (valid for Y, XY, Waveform and
Polygon plots only).
(GetPlotAttribute only.)

ATTR_PLOT_ZDATA void * A void pointer to a buffer for the Z data to be
copied to. This buffer will be a
two-dimensional array (valid for Intensity
plots only). (GetPlotAttribute only.)

ATTR_PLOT_XDATA_TYPE int The type of data in the X data plot (valid for
X, XY and Polygon plots only).
(GetPlotAttribute only.)

ATTR_PLOT_YDATA_TYPE int The type of data in the Y data plot (valid for
Y, XY, Waveform and Polygon plots only).
(GetPlotAttribute only.)

ATTR_PLOT_ZDATA_TYPE int The type of data in the Z data plot (valid for
Intensity plots only).
(GetPlotAttribute only.)

(continues)

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-77 LabWindows/CVI User Interface Reference

For graph plots (GetPlotAttribute and SetPlotAttribute) (Continued)

Name Type Description

ATTR_PLOT_XDATA_SIZE int The number of bytes in the X data plot data
(valid for X, XY and Polygon plots only).
(GetPlotAttribute only.)

ATTR_PLOT_YDATA_SIZE int The number of bytes in the Y data plot data
(valid for Y, XY, Waveform and Polygon
plots only). (GetPlotAttribute only.)

ATTR_PLOT_ZDATA_SIZE int The number in bytes in the Z data plot data
(valid for Intensity plots only).
(GetPlotAttribute only.)

Graph Attribute Discussion

An RGB value is a 4-byte integer with the hexadecimal format 0x00RRGGBB. RR, GG, and BB
are the respective red, green, and blue components of the color value. You can use the User
Interface Library function MakeColor to create an RGB value from red, green, and blue color
components. See Table 3-3 for a list of common color values.

The ATTR_DATA_MODE attribute controls whether LabWindows/CVI keeps or discards the
scaled plot data for subsequent plots after drawing the data to the screen. If you set the attribute
to VAL_RETAIN, LabWindows/CVI retains scaled plot data in memory and accesses the data
when the plot is overlapped or hidden. If you set the attribute to VAL_DISCARD, the scaled plot
data is freed from memory as soon as the plot is drawn. This conserves memory, but plots are
lost if the graph is rescaled, overlapped, or hidden.

The ATTR_COPY_ORIGINAL_DATA attribute specifies whether LabWindows/CVI makes a
copy of the original plot data for each new plot added to the graph. The original plot data is
needed whenever the graph is rescaled and the original plot data has been overwritten in your
program.

The ATTR_SMOOTH_UPDATE attribute specifies whether LabWindows/CVI stores a copy of
the graph in an off-screen bitmap. Using an off-screen bitmap results in less plot flicker and
smoother cursor movement, but consumes more memory.

The ATTR_SCROLL_MODE attribute specifies the scrolling mode of the strip chart. If you set
the attribute to VAL_CONTINUOUS, old data scrolls off the left edge of the plot area as new data
plots at the right edge. If you set the attribute to VAL_SWEEP, new data overwrites old data
from left to right. If you set the attribute to VAL_BLOCK, the entire plot area is erased when
data reaches the right edge of the area.

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-78 © National Instruments Corporation

The ATTR_CURSOR_MODE specifies the behavior of a graph cursor. You can move
VAL_FREE_FORM cursors to any location inside the plot area. VAL_SNAP_TO_POINT
cursors snap to the nearest data point when released.

Table 3-21 shows the cursor styles associated with ATTR_CROSS_HAIR_STYLE. (Assume
that ATTR_CURSOR_POINT_STYLE is set to VAL_SIMPLE_DOT.)

Table 3-21. Cursor Styles for ATTR_CROSS_HAIR_STYLE

Value Cross hair Style

VAL_LONG_CROSS

VAL_VERTICAL_LINE

VAL_HORIZONTAL_LINE

VAL_NO_CROSS

VAL_SHORT_CROSS

Table 3-22 shows the styles associated with ATTR_CURSOR_POINT_STYLE and
ATTR_TRACE_POINT_STYLE.

Table 3-22. Styles for ATTR_CURSOR_POINT_STYLE and ATTR_TRACE_POINT_STYLE

Value Style Name
Cursor/

Point Style

VAL_EMPTY_SQUARE

VAL_SOLID_SQUARE

VAL_ASTERISK

VAL_DOTTED_EMPTY_SQUARE

VAL_DOTTED_SOLID_SQUARE

VAL_SOLID_DIAMOND

VAL_EMPTY_SQUARE_WITH_X

VAL_EMPTY_SQUARE_WITH_CROSS

VAL_BOLD_X

VAL_SMALL_SOLID_SQUARE

(continues)

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-79 LabWindows/CVI User Interface Reference

Table 3-22. Styles for ATTR_CURSOR_POINT_STYLE and ATTR_TRACE_POINT_STYLE
(Continued)

Value Style Name
Cursor/

Point Style

VAL_SIMPLE_DOT

VAL_EMPTY_CIRCLE

VAL_SOLID_CIRCLE

VAL_DOTTED_SOLID_CIRCLE

VAL_DOTTED_EMPTY_CIRCLE

VAL_BOLD_CROSS

VAL_CROSS

VAL_SMALL_CROSS

VAL_X

VAL_SMALL_X

VAL_DOTTED_SOLID_DIAMOND

VAL_EMPTY_DIAMOND

VAL_DOTTED_EMPTY_DIAMOND

VAL_SMALL_EMPTY_SQUARE

VAL_NO_POINT

Table 3-23 shows the line styles associated with ATTR_LINE_STYLE. (Assume that
ATTR_PLOT_STYLE is set to VAL_THIN_LINE .)

Table 3-23. Line Styles for ATTR_LINE_STYLE

Value Line Style
VAL_SOLID

VAL_DASH

VAL_DOT

VAL_DASH_DOT

VAL_DASH_DOT_DOT

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-80 © National Instruments Corporation

Table 3-24 shows the plot styles associated with ATTR_PLOT_STYLE. (Assume that the point
style is set to VAL_ASTERISK.)

Table 3-24. Plot Styles for ATTR_PLOT_STYLE

Value Plot Style
VAL_THIN_LINE

VAL_FAT_LINE

VAL_CONNECTED_POINTS

VAL_SCATTER

VAL_THIN_STEP

VAL_FAT_STEP

VAL_VERTICAL_BAR

(not valid for strip charts)

VAL_HORIZONTAL_BAR

(not valid for strip charts)
VAL_BASE_ZERO_VERTICAL_BARS

(not valid for strip charts)

VAL_BASE_ZERO_HORIZONTAL_BARS

(not valid for strip charts)

Note: Under Windows, the plot style VAL_FAT_LINE forces the line style to be VAL_SOLID.

Plot Origin Discussion

When PlotText or PlotBitmap is called, the text string or bitmap is placed on the graph
with respect to a point specified by coordinates passed into the function. The orientation of the
string or bitmap with respect to the point is determined by the ATTR_PLOT_ORIGIN attribute.
The attribute specifies where the point (that is, the origin) is with respect to the rectangle that
implicitly encloses the string or bitmap. For example, VAL_LOWER_LEFT (the default value)
specifies that the string or bitmap be plotted so that the lower left corner of its enclosing
rectangle is at the point specified.

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-81 LabWindows/CVI User Interface Reference

The possible values are shown in the following table.

Table 3-25. Values for ATTR_PLOT_ORIGIN

Value Description

VAL_LOWER_LEFT The lower left corner of the enclosing rectangle.

VAL_CENTER_LEFT The midpoint of the left edge of the enclosing rectangle.

VAL_UPPER_LEFT The upper left corner of the enclosing rectangle.

VAL_LOWER_CENTER The midpoint of the bottom edge of the enclosing rectangle.

VAL_CENTER_CENTER The center of the enclosing rectangle.

VAL_UPPER_CENTER The midpoint of the top edge of the enclosing rectangle.

VAL_LOWER_RIGHT The lower right corner of the enclosing rectangle.

VAL_CENTER_RIGHT The midpoint of the right edge of the enclosing rectangle.

VAL_UPPER_RIGHT The upper right corner of the enclosing rectangle.

Two Y Axis (graphs only)

There are always two Y axes on a graph. By default, only the left Y axis is visible.

You can make the Y axis visible by using the following code.

SetCtrlAttribute (panel, ctrl, ATTR_ACTIVE_YAXIS, VAL_RIGHT_AXIS);
SetCtrlAttribute (panel, ctrl, ATTR_YLABEL_VISIBLE, 1);

You can choose to make either one, both, or none of the Y axes visible.

The ATTR_ACTIVE_YAXIS attribute determines which of the two Y axes are used for the
following actions.

• Adding a plot to the graph. (The active Y axis serves as the scaling reference.)

• Setting a Y axis attribute. (Each Y axis has its own attribute values.)

• Setting the Y axis range.

• Creating a graph cursor. (The cursor is associated with the active Y axis.)

Once a plot has been added to a graph, you can associate it with the other Y axis by using the
ATTR_PLOT_YAXIS attribute.

Once a graph cursor has been created, you can associate it with the other Y axis by using the
ATTR_CURSOR_YAXIS attribute. The associated Y axis serves as the reference for the cursor
position coordinates in calls to SetGraphCursor and GetGraphCursor .

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-82 © National Instruments Corporation

Optimizing Graph Controls

This section presents attributes related to graphing and discusses how various settings affect
performance.

Optimizing Speed

The following attributes affect the speed and appearance of your graph displays as they update.

Speed and ATTR_SMOOTH_UPDATE

When you enable ATTR_SMOOTH_UPDATE or select Smooth Update in the Graph control
editor, your graph updates first to an off-screen buffer and then to the screen.

ATTR_SMOOTH_UPDATE improves performance as follows.

• Eliminates flashing associated with plotting large plots.

• Optimizes speed when you use graph cursors.

• Optimizes speed when a graph is updated after it has been overlapped or hidden.

ATTR_SMOOTH_UPDATE has the following disadvantages.

• Initial plotting speed is slower.

• Memory usage increases.

Smooth updating of the graph is automatically disabled when you make the color of the plot
background transparent or when a visible item overlaps the plot area.

ATTR_SMOOTH_UPDATE slows the initial graphing of a plot because a graph updates to the
offscreen buffer before plotting to the screen. However, when another window is covering a
plot, and then you remove that window, ATTR_SMOOTH_UPDATE lets LabWindows/CVI
refresh a graph quickly because the graph already exists in the offscreen buffer.

Speed and VAL_AUTO_SCALE

When you enable autoscaling both the recalculation of the axes limits and the remapping of
graph plots are dynamically adjusted with every new plot. As the number of existing plots on a
graph increase, you need to try to minimize scaling adjustments because the time needed to
recalculate and remap all of the existing plots increases. You may want to minimize delays by
disabling autoscaling, which prevents the recalculation and remapping of the graph plots. To
disable autoscaling, call the SetAxisRange function with the xAxisScaling and the
yAxisScaling parameters each set to VAL_MANUAL or VAL_LOCK.

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-83 LabWindows/CVI User Interface Reference

Controlling How Graphs Refresh

You can use the refresh parameter of the DeleteGraphPlot function and the
RefreshGraph function to determine when a graph is updated. A “draw event” signals
LabWindows/CVI to refresh its graph. The last parameter of DeleteGraphPlot determines
when a draw event is generated. To delete plots from a graph, your program can call
DeleteGraphPlot with refresh set to VAL_DELAYED_DRAW, so that plots do not disappear
until a draw event occurs.

The following conditions generate draw events.

• A GUI object covers the plot area.

• Almost any graph attribute changes.

• Adding a new plot while REFRESH_GRAPH is enabled.

• DeleteGraphPlot is called with the refresh parameter set to
VAL_IMMEDIATE_DRAW.

• The program enables REFRESH_GRAPH through SetCtrlAttribute .

• The cursor moves over the graph.

• The program calls RefreshGraph .

• A call to ProcessDrawEvents or ProcessSystemEvents updates graph attribute
changes. If a plot update is pending as well, the attribute change makes that plot update, too.

The preferable way to delete a plot and then plot a new one is to set refresh to
VAL_DELAYED_DRAW when deleting, then plot the new plot. When you do this, and at the
same time you enable smooth updating, you eliminate screen flashing and improve the speed of
the update.

DeleteGraphPlot deletes all plots on a graph when the plotHandle parameter is set to -1.

ATTR_REFRESH_GRAPH determines whether your program plots on a graph control
immediately or plots after the graph is rescaled, overlapped, hidden or the attribute is enabled.

When your program builds a multi-plot image, for which only the final appearance is of interest,
the attribute should be turned off before plotting begins, and turned on when it ends. This causes
only one draw event to occur, instead of one for each plot. Plotting occurs even more rapidly
when you enable the smooth updates attribute. Plots that you add while REFRESH_GRAPH is
disabled are held in pending status: they are part of the graph, but are invisible until a draw event
takes place. Pending plots only appear after a call to RefreshGraph or when the
ATTR_REFRESH_GRAPH attribute is enabled.

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-84 © National Instruments Corporation

Optimizing Memory Usage

You can optimize memory usage by disabling the ATTR_COPY_ORIGINAL_DATA attribute
and the ATTR_DATA_MODE setting, but the savings are not significant in comparison to the
overall amount of memory that LabWindows/CVI uses.

The ATTR_SMOOTH_UPDATE graph attribute saves an off-screen bitmap of the graph. You can
save memory by disabling this attribute.

The ATTR_DATA_MODE graph attribute lets you retain or discard scaled plot data for
subsequent plots.

• When you disable ATTR_SMOOTH_UPDATE and set ATTR_DATA_MODE to discard, you
get the following results.

− No data prints with PrintPanel or PrintCtrl .

− Plot data is lost when the graph is rescaled, hidden, overlapped or when a draw event
occurs. (Reasons for rescaling are listed later in this subsection.)

• When you enable ATTR_SMOOTH_UPDATE and set ATTR_DATA_MODE to discard, you
get the following result.

− Plot data is lost when the graph is rescaled or when a draw event occurs.

Note: You cannot delete plots that you add to a graph while ATTR_DATA_MODE is set to
discard because the plot functions do not return a plot ID. The graph behaves as if the
plot does not exist.

 Your graph can rescale for the following reasons.

• SetAxisRange is called.

• ATTR_XMAP_MODE or ATTR_YMAP_MODE changes.

• You draw a new plot when autoscaling is enabled and the minimum or maximum values
change.

• You change graph attributes that affect the size of the plot area.

The ATTR_COPY_ORIGINAL_DATA graph attribute determines whether the graph control will
keep its own copy of the plot data. When disabled, the graph control maintains a pointer to the
original array data used that was used when you originally made a call to that plotting function.
If the data in the original array changes or is deallocated, either the graph displays incorrect data
or an invalid pointer error occurs. ATTR_COPY_ORIGINAL_DATA only affects graph plots that
are associated with arrays, such as PlotWaveform and PlotXY . The graph control only
needs to go back to the original data when the graph is rescaled.

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-85 LabWindows/CVI User Interface Reference

Note: ATTR_COPY_ORIGINAL_DATA is only valid if ATTR_DATA_MODE is set to retain
data.

Programming with Pop-Up Panels

Use InstallPopup to display and activate a panel as a dialog box. You must load a panel
with the LoadPanel function or create the panel using the NewPanel function.

After a pop-up panel is installed, users can perform operations in LabWindows/CVI only on the
pop-up panel.

Only the active pop-up panel can generate events (with the exception EVENT_PANEL_MOVE,
EVENT_PANEL_SIZE, and EVENT_CLOSE events from other panels). Use callback functions
to process any kind of event or GetUserEvent to only process commit events.
GetUserEvent returns the ID of the control that caused the event. GetUserEvent can
operate in one of two ways.

• GetUserEvent waits for the user to generate an event before returning to the calling
program.

• GetUserEvent returns immediately whether or not an event has occurred.

Use RemovePopup to remove either the active pop-up panel or all pop-up panels.
RemovePopup does not unload the panel from memory.

Use SetSystemPopupAttributes and GetSystemPopupAttributes to set or obtain
the values of attributes that affect all of the pop-up panel. The predefined pop-up panels are
accessed through the following functions.

ConfirmPopup
DirSelectPopup
FileSelectPopup
FontSelectPopup
GenericMessagePopup
MessagePopup
MultifileSelectPopup
PromptPopup
SetFontPopupDefaults
WaveformGraphPopup
XGraphPopup
XYGraphPopup
YGraphPopup

These functions handle the installation, user interaction with, and removal of the pop-up panels.

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-86 © National Instruments Corporation

Using the System Attributes

The system attributes are set and obtained using the SetSystemAttribute and
GetSystemAttribute functions. They are attributes that apply to the User Interface Library
in general, rather than to particular instances of user interface objects. The following table lists
the system attributes.

Table 3-26. System Attributes

Attribute Type Notes

ATTR_ALLOW_UNSAFE_TIMER_EVENTS int 1 - Allow unsafe timer events.
0 - Do not allow unsafe time events (the
default)
Windows 95 and NT only.
See discussion below.

ATTR_ALLOW_MISSING_CALLBACKS int 1 - LoadPanel and LoadMenuBar
return a valid panel or menu bar handle
even if not all callback functions refer-
enced in the .uir file can be found.
0 - LoadPanel and LoadMenuBar
return an error code if not all callback
functions referenced in the .uir file
can be found (the default).

ATTR_REPORT_LOAD_FAILURE int 1 - Display a message when
LoadPanel or LoadMenuBar fail
(the default)
0 - Do not display a message when
LoadPanel or LoadMenuBar fail
See discussion below.

ATTR_SUPPRESS_EVENT_PROCESSING int 1 - No events are processed
0 - Events are processed normally
 (the default)
See discussion below.

Unsafe Timer Events

By default, timer control callbacks do not occur on Windows while you are moving or sizing a
window, while the system menu is pulled down, or while the Alt-Tab key is pressed. (These
conditions are called event-blocking conditions.) On Windows 95 and NT, you can use the
ALLOW_UNSAFE_TIMER_EVENTS attribute to enable timer events under some, but not all, of
the event-blocking conditions. If you set the ALLOW_UNSAFE_TIMER_EVENTS attribute to
TRUE, timer events are blocked only under the following conditions.

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-87 LabWindows/CVI User Interface Reference

• You have clicked on a window title bar, you are holding the mouse button down, but you are
not moving the mouse.

• You are moving or resizing a window, and the Windows 95 "Show Window Contents While
Dragging" option is disabled (or you are running on Windows NT.)

There are several limitations to this feature. One limitation is that while an event-blocking
condition is in effect, timer callbacks are called no faster than once per 55 milliseconds.

Another limitation is that if a timer callback is called during an event-blocking condition and the
callback causes events to be processed, mouse and keyboard input can behave erratically. Your
program can cause this to happen in the following ways.

• The timer callback function calls ProcessSystemEvents in a loop.

• The timer callback function calls RunUserInterface , GetUserEvent , or a popup
panel function such as MessagePopup or FileSelectPopup .

• Program execution is suspended in the timer callback function because of a breakpoint or
run-time error.

In either case, the system functions normally once the timer callback returns.

This problem is inherent to Windows and occurs regardless of the development environment.

You should not enable this attribute until the code in your timer callbacks has been thoroughly
debugged. The behavior of the system is undefined if you hit a breakpoint or run-time error
when an event-blocking condition is in effect.

Reporting Load Failures

The LoadPanel , LoadPanelEx , LoadMenuBar , and LoadMenuBarEx functions can fail
for many reasons. For instance, the library may not be able to find the .uir file. Or a callback
function specified in the panel or menu bar may not be defined in the project, executable, or
DLL.

It is not unusual for a load functions to fail in a standalone executable even though it succeeded
in LabWindows/CVI. If you do not check for errors in your program, the behavior of the
program can be very confusing. ATTR_REPORT_LOAD_FAILURE, when enabled, causes an
error message to be displayed when one of the load functions fails. The error message is
displayed in all cases except when debugging and the Break on Library Errors feature are in
effect. The attribute is enabled by default.

If a load function fails in a standalone executable or DLL created in an external compiler, the
most common reasons are:

• The executable was created in a directory different than where the LabWindows/CVI project
file was saved. This can cause the library to fail to find the .uir file.

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-88 © National Instruments Corporation

• You did not create a .UIR Callbacks Object File, or you did not add it to your external
compiler project. (See the External Compiler Support command in the Build menu of the
Project Window.) This will cause the library to fail to find callback functions referenced in
the .uir file.

• You did not call InitCVIRTE at the beginning of your program or in DLLMain . This will
cause the library to fail to find callback functions referenced in the .uir file.

• Your callback functions are in a DLL but are not exported by the DLL, and you are not using
LoadPanelEx or LoadMenuBarEx . This will cause the library to fail to find callback
functions referenced in the .uir file.

Suppressing Event Processing

If you call QuitUserInterface to terminate a RunUserInterface call and there are
already events in the event queue, RunUserInterface processes these events before it
terminates. To ensure that no events are processed and that no callbacks are called before
RunUserInterface terminates, set the ATTR_SUPPRESS_EVENT_PROCESSING attribute
to 1. This attribute also suppresses event processing and callbacks if it is enabled while a call to
GetUserEvent or ProcessSystemEvents is in effect. The attribute is automatically
reset to zero when another call to RunUserInterface , GetUserEvent , or
ProcessSystemEvents is made.

Generating Hard Copy Output

You can generate hard copy output of panels or individual controls to a graphics printer or a file.

Functions for Hard Copy Output

Use PrintPanel to output a panel and its child panels.

Use PrintCtrl to output an individual control.

Use SetPrintAttribute to set hard copy attributes.

Use GetPrintAttribute to obtain hard copy attributes.

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-89 LabWindows/CVI User Interface Reference

Hard Copy Attributes

Table 3-27 contains the list of control attributes accessible through GetPrintAttribute and
SetPrintAttribute .

Table 3-27. Hard Copy Attributes

Attribute Type Notes

ATTR_COLOR_MODE int 0 = VAL_BW
1 = VAL_GRAY_SCALE
2 = VAL_COLOR

ATTR_DUPLEX int 1 = VAL_SIMPLEX
2 = VAL_VERTDUPLEX
3 = VAL_HORIZDUPLEX

ATTR_EJECT_AFTER int 1 = eject page after print
0 = do not eject page after print

ATTR_NUMCOPIES int Number of copies; range = 1 to 100

ATTR_ORIENTATION int 1 = VAL_PORTRAIT
2 = VAL_LANDSCAPE

ATTR_PAPER_HEIGHT int Millimeter/10 or
-1 = VAL_USE_PRINTER_DEFAULT
0 = VAL_INTEGRAL_SCALE

ATTR_PAPER_WIDTH int Millimeter/10 or
-1 = VAL_USE_PRINTER_DEFAULT
0 = VAL_INTEGRAL_SCALE

ATTR_TAB_INTERVAL int The number of spaces represented by a <Tab> character.

ATTR_TEXT_WRAP int Determines whether to wrap text when text extends past the
defined width.

ATTR_XOFFSET int Inches or VAL_USE_PRINTER_DEFAULT

ATTR_YOFFSET int Inches or VAL_USE_PRINTER_DEFAULT

ATTR_XRESOLUTION int Dots Per Inch or VAL_USE_PRINTER_DEFAULT

ATTR_YRESOLUTION int Dots Per Inch or VAL_USE_PRINTER_DEFAULT

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-90 © National Instruments Corporation

Hard Copy Attribute Discussion

The following list shows attribute names and their purpose.

ATTR_DUPLEX — Determines if the output is single or double sided.

ATTR_EJECT_AFTER — Determines if the next output is ejected from the printer. While
ATTR_EJECT_AFTER is set to zero, outputs print on the same
page until ATTR_EJECT_AFTER is set to one.

ATTR_ORIENTATION — Determines if the hard copy is in portrait or landscape mode.

ATTR_PAPER_HEIGHT— VAL_INTEGRAL_SCALE forces the hard copy height to be
scaled integrally to the width preventing printer aliasing
(distortion).

ATTR_PAPER_WIDTH — VAL_INTEGRAL_SCALE forces the hard copy width to be
scaled integrally to the height preventing printer aliasing
(distortion).

ATTR_XOFFSET — Sets the x offset of the hard copy image on the paper. The
coordinates (0,0) define the upper-left corner of the paper.
VAL_USE_PRINTER_DEFAULT centers the image in the x
direction.

ATTR_YOFFSET — Sets the y offset of the hard copy image on the paper. The
coordinates (0,0) define the upper-left corner of the paper.
VAL_USE_PRINTER_DEFAULT centers the image in the y
direction.

ATTR_XRESOLUTION — Sets the x resolution of the printer. It can be used if the printer
supports different resolutions in the x and y dimensions.

ATTR_YRESOLUTION — Sets the y resolution of the printer. It can be used if the printer
supports different resolutions in the x and y dimensions.

Note: Because of a limitation in the UNIX xpr printing utility, UNIX users cannot print
multiple outputs on the same page when their printer is configured for Postscript.

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-91 LabWindows/CVI User Interface Reference

Table 3-28. Values for ATTR_COLOR_MODE

Type of Printer Values

 default value VAL_COLOR

PC with color printer: VAL_COLOR: prints in color

VAL_GRAYSCALE: prints in grayscale

VAL_BW: undefined

PC with non-color printer VAL_COLOR: prints in grayscale

VAL_GRAYSCALE: prints in grayscale

VAL_BW: prints in black and white

Sun with color printer VAL_COLOR: prints in color

VAL_GRAYSCALE: prints in grayscale

VAL_BW: undefined

Sun with non-color printer VAL_COLOR: undefined

VAL_GRAYSCALE: prints in grayscale

VAL_BW: prints in black and white

Special User Interface Functions

RunUserInterface

RunUserInterface runs the GUI and issues all events to callback functions, until
QuitUserInterface is called from a callback. The return value for RunUserInterface
is passed back from QuitUserInterface .

Precedence of Callback Functions

Events trigger callback functions in the following order.

• For control operation events:
1. Control callback
2. Panel callback (keypress and mouse events only)
3. Main callback

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-92 © National Instruments Corporation

• For panel events:
1. Panel callback
2. Main callback

• For menu commit events:
1. Menu item callback
2. Main callback

• Timer control event:
1. Control callback

• Main callback event:
1. Main Callback

Note: The commit event is placed in the GetUserEvent queue after being sent to all
callbacks.

Swallowing Events

User callbacks must always return 0 unless they intend to "swallow" the event to which they are
responding. To swallow the event, the callback should return 1.

Only user input (mouse click and keypress events) and commit events can be swallowed. If
swallowed, no further callbacks are called for that event. If a user input event is swallowed, the
user’s mouse click or keypress is ignored. If a commit event is swallowed, it is not placed into
the GetUserEvent queue.

Note: The events that can be swallowed are:

EVENT_COMMIT EVENT_KEYPRESS
EVENT_LEFT_CLICK EVENT_LEFT_DOUBLE_CLICK
EVENT_RIGHT_CLICK EVENT_RIGHT_DOUBLE_CLICK
EVENT_END_TASK

GetUserEvent

GetUserEvent gets the next commit event from the GetUserEvent queue. Commit events
occur when the user changes the state of a hot or validate control or selects a menu item. You
can set GetUserEvent to wait until the next event or to return immediately even if no event
occurs.

InstallMainCallback and SetIdleEventRate

An object-based callback approach is a common method of using callbacks to process user
events. In an object-based callback approach, you use multiple callbacks to control user
interface objects. You can assign unique callback functions to each panel, control, and menu
item, or you can use separate callback functions for specific groups of controls or menu items.

Chapter 3 Programming with the User Interface Library

© National Instruments Corporation 3-93 LabWindows/CVI User Interface Reference

You can use any scheme that makes sense to you. The object-based callback approach
subdivides the program into small, manageable sections, each section having a specific task.

Alternatively, you can install a single callback function using InstallMainCallback to
process all events. A main callback is like a GetUserEvent loop that is “turned upside-
down.”

The main callback function is the only type of callback function that responds to
EVENT_END_TASK. This event occurs only on MS Windows when the user is trying to exit
Windows. Return a non-zero value to abort the exit of Windows.

The main callback function also responds to idle events. For example, your program will
normally be suspended in the GetUserEvent or RunUserInterface function while a user
holds the mouse button down on a control or pull-down menu. Other than timer control
callbacks, any portion of your program that is supposed to run continuously temporarily ceases
during that time. However, idle events occur continuously while your program is running, even
while suspended in GetUserEvent or RunUserInterface . You can set the rate at which
idle events occur using SetIdleEventRate .

Note: EVENT_VAL_CHANGED, EVENT_IDLE and EVENT_TIMER_TICK are the only
events that are generated while a user holds the mouse button down on a control or
pull-down menu. The operating system blocks all events (including idle events) when a
top-level panel is moved or sized.

Note: In general, it is recommended that you use timer controls instead of idle events.

For even greater flexibility, you can combine the object-based callback approach with the main
callback approach. Object-based callbacks will be called before the main callback so that both
have the opportunity to process events.

ProcessDrawEvents

While inside of a callback function or in code that does not call RunUserInterface or
GetUserEvent , the program does not update the user interface. If a particular function is
overly time-consuming, it essentially “locks out” user interface updates. To force these updates
to be processed, place a call to ProcessDrawEvents in your source code.

Note: The user interface is updated automatically by the GetUserEvent function and
when a callback returns.

ProcessSystemEvents

While a callback function or other section of code that does not call RunUserInterface or
GetUserEvent runs, user interface and system events are not processed. While such
functions or code run, they temporarily stop user interface and system events. The
ProcessSystemEvents function lets you force events to process while a time-consuming

Programming with the User Interface Library Chapter 3

LabWindows/CVI User Interface Reference 3-94 © National Instruments Corporation

function is running. You can make your program call ProcessSystemEvents occasionally,
from within the function that is preventing system events. Because ProcessSystemEvents
can allow other callback functions to be executed before it completes, you must use this function
with care.

The ProcessSystemEvents function processes all pending system events, such as,

• System events that are delayed or suspended by a user application, for example keystrokes,
mouse events, and screen updates.

• Events generated by other applications, for example, Windows messages intended to invoke
a callback within the RegisterWinMsgCallback function.

Note: The ProcessSystemEvents function is called automatically by the
LabWindows/CVI GetUserEvent function and after a callback returns.

PostDeferredCall

PostDeferredCall posts a function to LabWindows/CVI that is called at the next
occurrence of GetUserEvent , RunUserInterface , or ProcessSystemEvents .
PostDeferredCall would typically be used in a function installed as an asynchronous
interrupt handler. The capabilities of the asynchronous interrupt handler are limited. It cannot
perform time consuming tasks and it cannot call into the User Interface Library. The function
that is posted by PostDeferredCall contains code that cannot be executed at interrupt time.
This feature is useful when external devices generate events during source program execution.

QueueUserEvent

Use QueueUserEvent to place a programmer-defined event in the GetUserEvent queue.
Event numbers 1000 to 10000 are reserved for programmer-defined events. GetUserEvent
receives programmer-defined events.

FakeKeystroke

Use FakeKeystroke to simulate a keystroke. This function has the same effect as actually
pressing the key at the keyboard.

Note: The order in which the fake keystroke is received in relation to other events is not
defined, so you must use this function with care.

QuitUserInterface

QuitUserInterface terminates the RunUserInterface function.

© National Instruments Corporation 4-1 LabWindows/CVI User Interface Reference

Chapter 4
User Interface Library Reference

This chapter describes the functions in the LabWindows User Interface Library. The User
Interface Library Overview section contains general information about the User Interface
Library functions and panels. The User Interface Library Function Reference section contains
an alphabetical list of function descriptions.

User Interface Library Overview

This section contains general information about the User Interface Library functions and panels.

User Interface Function Panels

The User Interface Library function panels are grouped in a tree structure according to the types
of operations performed. The User Interface Library function tree is shown in Table 4-1.

The bold headings in the tree are the names of function classes and subclasses. Function classes
and subclasses are groups of related function panels. The headings in plain text are the names of
individual function panels. Each User Interface Library function panel generates one function
call. The names of the corresponding function calls are in bold italics to the right of the function
panel names.

The function classes in the tree are described here.

• Panels is a class of functions that load/create, modify, and unload/discard user-defined
panels.

• Menu Structures is a class of functions that load/create, modify, and unload/discard
user-defined menu structures.

• Controls/Graphs/Strip Charts is a class of functions that create, control, modify, and
discard controls and graphs.

• Pop-up Panels is a class of functions that install and interact with user-defined and
predefined dialog boxes.

• Callback Functions is a class of functions that install user-defined callback functions that
respond to user interface events and Windows messages.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-2 © National Instruments Corporation

• User Interface Management is a class of functions that control user input and screen
operations.

• Printing is a class of functions that configure and generate hard copy output.

• Miscellaneous is a class of functions that do not fit into the other classes.

• LW DOS Compatibility Functions is a class of functions that are maintained for backwards
compatibility with existing LabWindows for DOS applications.

Table 4-1. The User Interface Library Function Tree

User Interface Library Function Name
Panels

Load Panel LoadPanel
Load Panel (Extended) LoadPanelEx
New Panel NewPanel
Discard Panel DiscardPanel
Duplicate Panel DuplicatePanel
Display Panel DisplayPanel
Hide Panel HidePanel
Get Active Panel GetActivePanel
Set Active Panel SetActivePanel
Validate Panel ValidatePanel
Default Panel DefaultPanel
Save Panel State SavePanelState
Recall Panel State RecallPanelState
Get Panel Attribute GetPanelAttribute
Set Panel Attribute SetPanelAttribute
Set Panel Position SetPanelPos

Menu Structures
Menu Bars

Load Menu Bar LoadMenuBar
Load Menu Bar (Extended) LoadMenuBarEx
New Menu Bar NewMenuBar
Discard Menu Bar DiscardMenuBar
Set Panel Menu Bar SetPanelMenuBar
Get Panel Menu Bar GetPanelMenuBar
Get Menu Bar Attribute GetMenuBarAttribute
Set Menu Bar Attribute SetMenuBarAttribute
Empty Menu Bar EmptyMenuBar
Get Shared Menu Bar Event Panel GetSharedMenuBarEventPanel

(continues)

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-3 LabWindows/CVI User Interface Reference

Table 4-1. The User Interface Library Function Tree (Continued)

Menus
New Menu NewMenu
Discard Menu DiscardMenu
Empty Menu EmptyMenu
New SubMenu NewSubMenu
Discard SubMenu DiscardSubMenu
Run Popup Menu RunPopupMenu

Menu Items
New Menu Item NewMenuItem
Discard Menu Item DiscardMenuItem
Insert Separator InsertSeparator

Controls/Graphs/Strip Charts
General Functions

New Control NewCtrl
Duplicate Control DuplicateCtrl
Discard Control DiscardCtrl
Get Active Control GetActiveCtrl
Set Active Control SetActiveCtrl
Default Control Value DefaultCtrl
Get Control Value GetCtrlVal
Set Control Value SetCtrlVal
Get Control Attribute GetCtrlAttribute
Set Control Attribute SetCtrlAttribute
Get Control Bounding Rectangle GetCtrlBoundingRect

List (Label/Value) Controls
Insert List Item InsertListItem
Replace List Item ReplaceListItem
Delete List Item DeleteListItem
Get Value From Index GetValueFromIndex
Get Value Length From Index GetValueLengthFromIndex
Get Index From Value GetIndexFromValue
Get Control Index GetCtrlIndex
Set Control Index SetCtrlIndex
Clear List Control ClearListCtrl
Get Number of List Items GetNumListItems
Get List Item Image GetListItemImage
Set List Item Image SetListItemImage
Get Label From Index GetLabelFromIndex
Get Label Length From Index GetLabelLengthFromIndex
Is List Item Checked IsListItemChecked
Check List Item CheckListItem
Get Number of Checked Items GetNumCheckedItems

(continues)

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-4 © National Instruments Corporation

Table 4-1. The User Interface Library Function Tree (Continued)

Text Boxes
Insert Text Box Line InsertTextBoxLine
Replace Text Box Line ReplaceTextBoxLine
Delete Text Box Line DeleteTextBoxLine
Get Number of Text Box Lines GetNumTextBoxLines
Reset Text Box ResetTextBox
Get Text Box Line GetTextBoxLine
Get Text Box Line Length GetTextBoxLineLength

Graphs and Strip Charts
Graph Plotting and Deleting

Plot X PlotX
Plot Y PlotY
Plot X-Y PlotXY
Plot Waveform PlotWaveform
Plot Point PlotPoint
Plot Text PlotText
Plot Line PlotLine
Plot Rectangle PlotRectangle
Plot Polygon PlotPolygon
Plot Oval PlotOval
Plot Arc PlotArc
Plot Intensity PlotIntensity
Plot Scaled Intensity PlotScaledIntensity
Plot Bitmap PlotBitmap
Delete Graph Plot DeleteGraphPlot
Get Plot Attribute GetPlotAttribute
Set Plot Attribute SetPlotAttribute
Refresh Graph RefreshGraph

Graph Cursors
Get Graph Cursor GetGraphCursor
Set Graph Cursor SetGraphCursor
Get Active Graph Cursor GetActiveGraphCursor
Set Active Graph Cursor SetActiveGraphCursor
Get Graph Cursor Index GetGraphCursorIndex
Set Graph Cursor Index SetGraphCursorIndex
Get Cursor Attribute GetCursorAttribute
Set Cursor Attribute SetCursorAttribute

Strip Chart Traces
Plot Strip Chart PlotStripChart
Plot Strip Chart Point PlotStripChartPoint

(continues)

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-5 LabWindows/CVI User Interface Reference

Table 4-1. The User Interface Library Function Tree (Continued)

Clear Strip Chart ClearStripChart
Get Trace Attribute GetTraceAttribute
Set Trace Attribute SetTraceAttribute

Axis Scaling
Get Axis Scaling Mode GetAxisScalingMode
Set Axis Scaling Mode SetAxisScalingMode
Get Axis Range (Obsolete) GetAxisRange
Set Axis Range (Obsolete) SetAxisRange

Axis Label Strings
Insert Axis Item InsertAxisItem
Replace Axis Item ReplaceAxisItem
Delete Axis Item DeleteAxisItem
Clear Axis Items ClearAxisItems
Get Number of Axis Items GetNumAxisItems
Get Axis Item Label and Value GetAxisItem
Get Axis Item Label Length GetAxisItemLabelLength

Pictures
Display Image File DisplayImageFile
Delete Image DeleteImage
Get Image Info (Obsolete) GetImageInfo
Get Image Bits (Obsolete) GetImageBits
Set Image Bits (Obsolete) SetImageBits
Alloc Image Bits (Obsolete) AllocImageBits

Canvas
Drawing

Draw Point CanvasDrawPoint
Draw Line CanvasDrawLine
Draw Line To CanvasDrawLineTo
Draw Rectangle CanvasDrawRect
Dim Rectangle CanvasDimRect
Draw Rounded Rectangle CanvasDrawRoundedRect
Draw Oval CanvasDrawOval
Draw Arc CanvasDrawArc
Draw Poly CanvasDrawPoly
Draw Text in Rectangle CanvasDrawText
Draw Text at Point CanvasDrawTextAtPoint
Draw Bitmap CanvasDrawBitmap
Scroll CanvasScroll
Invert Rectangle CanvasInvertRect
Clear CanvasClear

(continues)

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-6 © National Instruments Corporation

Table 4-1. The User Interface Library Function Tree (Continued)

Batch Drawing
Start Batch Drawing CanvasStartBatchDraw
End Batch Drawing CanvasEndBatchDraw

Pens
Set Pen Position CanvasSetPenPosition
Get Pen Position CanvasGetPenPosition
Set Pen Attributes To Defaults CanvasDefaultPen

Clipping
Set Clipping Rectangle CanvasSetClipRect
Get Clipping Rectangle CanvasGetClipRect

Accessing Pixel Values
Get a Single Pixel Value CanvasGetPixel
Get Pixel Values CanvasGetPixels

Miscellaneous
Update Canvas CanvasUpdate

Timers
Reset Timer ResetTimer
Suspend Timer Callbacks SuspendTimerCallbacks
Resume Timer Callbacks ResumeTimerCallbacks

Pop-up Panels
Install Popup InstallPopup
Remove Popup RemovePopup
Message Popup MessagePopup
Confirm Popup ConfirmPopup
Prompt Popup PromptPopup
Generic Message GenericMessagePopup
File Select Popup FileSelectPopup
Multifile Select Popup MultiFileSelectPopup
Directory Select Popup DirSelectPopup
X Graph Popup XGraphPopup
Y Graph Popup YGraphPopup
X-Y Graph Popup XYGraphPopup
Waveform Graph Popup WaveformGraphPopup
Get System Popups Attribute GetSystemPopupsAttribute
Set System Popups Attribute SetSystemPopupsAttribute
Font Select Popup FontSelectPopup
Set Font Select Popup Defaults SetFontPopupDefaults

Callback Functions
Install Main Callback InstallMainCallback
Install Control Callback InstallCtrlCallback
Install Panel Callback InstallPanelCallback
Install Menu Callback InstallMenuCallback

(continues)

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-7 LabWindows/CVI User Interface Reference

Table 4-1. The User Interface Library Function Tree (Continued)

Install Menu Dimmer Callback InstallMenuDimmerCallback
Post Deferred Call PostDeferredCall
Windows Interrupt Support

Register Windows Msg Callback RegisterWinMsgCallback
Unregister Windows Msg Callback UnRegisterWinMsgCallback
Get CVI Window Handle GetCVIWindowHandle
Get CVI Task Handle GetCVITaskHandle

User Interface Management
Run User Interface RunUserInterface
Quit User Interface QuitUserInterface
Get User Event GetUserEvent
Set Input Mode SetInputMode
Process Draw Events ProcessDrawEvents
Process System Events ProcessSystemEvents
Queue User Event QueueUserEvent
Set Idle Event Rate SetIdleEventRate
Fake Keystroke FakeKeystroke
Get Sleep Policy GetSleepPolicy
Set Sleep Policy SetSleepPolicy

Printing
Get Print Attribute GetPrintAttribute
Set Print Attribute SetPrintAttribute
Print Control PrintCtrl
Print Panel PrintPanel
Print Text File PrintTextFile
Print Text Buffer PrintTextBuffer

Mouse and Cursor
Get Wait Cursor GetWaitCursorState
Set Wait Cursor SetWaitCursor
Get Mouse Cursor GetMouseCursor
Set Mouse Cursor SetMouseCursor
Get Global Mouse State GetGlobalMouseState
Get Relative Mouse State GetRelativeMouseState

Rectangles and Points
Creating and Modifying

Make Rect MakeRect
Set Rect Coordinates RectSet
Set Rect Coords From Points RectSetFromPoints
Set Bottom Edge of Rect RectSetBottom
Set Right Edge of Rect RectSetRight
Set Center Point of Rect RectSetCenter

(continues)

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-8 © National Instruments Corporation

Table 4-1. The User Interface Library Function Tree (Continued)

Offset Rect RectOffset
Move Rect RectMove
Grow (or Shrink) Rect RectGrow
Make Point MakePoint
Set Point Coordinates PointSet

Retrieving and Comparing Values
Get Rect Bottom RectBottom
Get Rect Right RectRight
Get Rect Center RectCenter
Are Rects Equal? RectEqual
Is Rect Empty? RectEmpty
Does Rect Contain Point? RectContainsPoint
Does Rect Contain Rect? RectContainsRect
Are Rects the Same Size? RectSameSize
Calculate Rect Union RectUnion
Calculate Rect Intersection RectIntersection
Are Points Equal? PointEqual
Calculate Point Pinned to Rect PointPinnedToRect

Bitmaps
Create New Bitmap NewBitmap
Get Bitmap From a File GetBitmapFromFile
Get Bitmap From a Control GetCtrlBitmap
Get Control Display Bitmap GetCtrlDisplayBitmap
Get Panel Display Bitmap GetPanelDisplayBitmap
Get Bitmap Info GetBitmapInfo
Get Bitmap Data GetBitmapData
Alloc Bitmap Data AllocBitmapData
Set Control Bitmap SetCtrlBitmap
Discard Bitmap DiscardBitmap

Clipboard
Get Text From Clipboard ClipboardGetText
Put Text On Clipboard ClipboardPutText
Get Bitmap From Clipboard ClipboardGetBitmap
Put Bitmap on Clipboard ClipboardPutBitmap

Miscellaneous
Make Color MakeColor
Get 3d Border Colors Get3dBorderColors
Create Meta Font CreateMetaFont
Get Text Display Size GetTextDisplaySize
Get Screen Size GetScreenSize
Get System Attribute GetSystemAttribute
Set System Attribute SetSystemAttribute

(continues)

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-9 LabWindows/CVI User Interface Reference

Table 4-1. The User Interface Library Function Tree (Continued)

LW DOS Compatibility Functions
Configure Printer ConfigurePrinter
Display PCX File DisplayPCXFile
DOS Color to RGB DOSColorToRGB
DOS Compatibility Window DOSCompatWindow

Get Error String GetUILErrorString

Hard Copy Output

Compatible Printers

Under Windows, LabWindows/CVI can print to any graphics printer with a Windows
compatible driver.

Under UNIX, LabWindows/CVI can print to any graphics printer compatible with the xpr
printing utility under the X Window System.

In addition, output can be redirected to a disk file.

Obtaining Hard Copy Output

You can use the following functions to obtain hard copy output.

PrintPanel
PrintCtrl
PrintTextFile
PrintTextBuffer

In addition, the following functions can also produce hard copy output if you select the hard
copy option from the following pop-ups.

XGraphPopup
XYGraphPopup
YGraphPopup
WaveformGraphPopup

Configuring Your System for Hard Copy Output

Under Windows, the printer driver and output port are set using the Printers utility in the
Windows Control Panel. Under UNIX, the default printer is set using the PRINTER
environment variable or the printcap file and the printer filter is set in the .Xdefaults file.
Hard copy attributes can be set interactively through a dialog box or programmatically through
the SetPrinterAttribute function. These attributes are discussed in the section,
Generating Hard Copy Output, in Chapter 3, Programming with the User Interface Library.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-10 © National Instruments Corporation

RGB Color Values

The following functions can use RGB color values as input Parameters.

PlotArc
PlotLine
PlotOval
PlotPoint
PlotPolygon
PlotRectangle
PlotText
PlotWaveform
PlotX
PlotXY
PlotY
PlotIntensity
SetImageBits
SetCtrlAttribute
SetCursorAttribute
SetMenuBarAttribute
SetPanelAttribute
SetTraceAttribute
SetPlotAttribute

An RGB value is a 4-byte integer with the hexadecimal format 0x00RRGGBB. RR, GG, and BB
are the respective red, green, and blue components of the color value. Common colors are
shown in Table 3-3 of Chapter 3, Programming with the User Interface Library.

You can also use the User Interface Library function, MakeColor , to create an RGB value
from red, green, and blue color components.

Fonts

The following functions use font values as input parameters.

PlotText
SetPanelAttribute
SetCtrlAttribute
FontSelectPopup
SetFontSelectPopupDefaults

See the section Using Fonts in Chapter 1, User Interface Concepts, for more information on font
values.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-11 LabWindows/CVI User Interface Reference

Shortcut Keys

The following functions can use shortcut key values as input parameters.

SetMenuBarAttribute
SetCtrlAttribute

In your code, shortcut keys are 4-byte integers consisting of three bit fields, 0x00MMVVAA,
where:

MM = the modifier key

VV = the virtual key

AA = the ASCII key

When constructing a shortcut key, modifier keys are bit-wise OR’ed with a virtual key or an
ASCII key. Either the ASCII field or the virtual key field will be all zeros. For example:

VAL_SHIFT_MODIFIER | VAL_F1_VKEY

produces a shortcut key of SHIFT-F1, and

VAL_MENUKEY_MODIFIER | 'D'

produces a shortcut key of <Ctrl-D>. Virtual keys do not require modifiers but ASCII keys
require at least one modifier.

Table 3-7 in Chapter 3, Programming with the User Interface Library shows the modifiers and
virtual keys for shortcut keys.

Plot Array Data Types

The following graphing functions have array parameters whose data values are interpreted based
on other parameters called data type specifiers.

PlotPolygon
PlotStripChart
PlotWaveform
PlotX
PlotXY
PlotY
PlotIntensity
WaveformGraphPopup
XGraphPopup
XYGraphPopup
YGraphPopup

A data type specifier determines the data type of an array and must be one of the values shown in
the following list.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-12 © National Instruments Corporation

VAL_CHAR
VAL_INTEGER
VAL_SHORT_INTEGER
VAL_FLOAT
VAL_DOUBLE
VAL_UNSIGNED_SHORT_INTEGER
VAL_UNSIGNED_INTEGER
VAL_UNSIGNED_CHAR

Include Files

The User Interface Library provides an include file that contains function declarations and
defined constants for all of the library routines. The include file is named userint.h . You
must include this file in all code modules that reference the User Interface Library.

Reporting Errors

All the functions in the User Interface Library return an integer code containing the result of the
call. If the return code is negative, an error occurred. Otherwise, the function completed
successfully. Refer to Appendix A, Error Conditions, for a complete list of error codes. You can
also use the GetUILErrorString function to convert the error number returned into a text
error message.

User Interface Library Function Reference

This section describes each function in the User Interface Library. The functions are in
alphabetical order.

AllocBitmapData

int status = AllocBitmapData (int bitmapID , int ** colorTable, char ** bits,
unsigned char ** mask);

Purpose

Allocates the buffers necessary for calling GetBitmapData on a bitmap. If you use
GetBitmapInfo , you must allocate the buffers yourself.

You must free the buffers when you are done with them.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-13 LabWindows/CVI User Interface Reference

Parameters

Input bitmapID integer The ID of the bitmap object containing the image. The
ID must have been obtained from NewBitmap ,
GetBitmapFromFile , GetCtrlBitmap ,
ClipboardGetBitmap ,
GetCtrlDisplayBitmap , or
GetPanelDisplayBitmap .

Output colorTable pointer to
integer

A pointer variable into which the address of the allocated
color table buffer is placed.

bits pointer to
unsigned
char

A pointer variable into which the address of the allocated
bits data buffer is placed.

mask pointer to
unsigned
char

A pointer variable into which the address of the allocated
mask buffer is placed.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

You may pass NULL for any of the colorTable, bits, or mask parameters if you do not want the
corresponding buffer to be allocated.

If the image does not exist, the colorTable, bits, and mask parameters are set to NULL. The
colorTable parameter is set to NULL if the pixel depth of the image is greater than 8. The mask
parameter is set to NULL if the image does not have a mask.

Warning: You must free the colorTable, bitmap, and mask buffers when you are done
with them. Use the ANSI C Library free function.

See Also

GetBitmapData, GetBitmapInfo

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-14 © National Instruments Corporation

AllocImageBits

int status = AllocImageBits(int panelHandle, int controlID , int imageID,
int ** colorTable, unsigned char ** bitmap,
unsigned char ** mask)

Purpose

Allocates the buffers necessary for calling GetImageBits on an existing image. This function
provides an alternative to calling GetImageInfo and allocating the buffers yourself.

The following control types can contain images.

picture controls
picture rings
picture buttons
graph controls

You must free the buffers allocated by this function when you are done with them.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently
in memory. This handle will have been returned by
the LoadPanel , NewPanel , or
DuplicatePanel function.

controlID integer The defined constant (located in the .uir header
file) which was assigned to the control by the user
Interface Editor, or the ID returned by the NewCtrl
or DuplicateCtrl function.

imageID integer For a picture ring, the zero-based index of an image
in the ring. For a graph, the plotHandle returned
from PlotBitmap . For picture controls and
buttons, this is ignored.

Output colorTable pointer to
integer

A pointer variable into which the address of the
allocated color table buffer is placed.

bitmap pointer to
unsigned
char

A pointer variable into which the address of the
allocated bitmap buffer is placed.

mask pointer to
unsigned
char

A pointer variable into which the address of the
allocated mask buffer is placed.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-15 LabWindows/CVI User Interface Reference

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

You may pass NULL for any of the colorTable, bitmap, and mask parameters if you do not
want the corresponding buffer to be allocated.

If the image does not exist, the colorTable, bitmap, and mask parameters are set to NULL. The
mask parameter is set to NULL if the image does not have a mask.

Warning: You must free the colorTable, bitmap, and mask buffers when you are done with
them. Use the ANSI C Library free function.

You can now use a 24-bit pixel depth in the four picture control image bits functions. When you
do, the color table parameters to the functions are not used. The array of bits contains RGB
values rather than indexes into the color table. Each RGB value in the array of bits represented
by a 3-byte value of the form

0xRRGGBB

where RR, GG, and BB represent the red, green and blue intensity of the color. The RR byte
should always be at the lowest memory address of the three bytes.

See Also

GetImageBits, SetImageBits

CanvasClear

int status = CanvasClear (int panelHandle, int controlID , Rect rect);

Purpose

Restores the specified rectangular area of a canvas control to the background color of the canvas
control. The background color of the canvas control is determined by the
ATTR_PICT_BGCOLOR attribute.

This operation is not restricted to the canvas clipping rectangle.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-16 © National Instruments Corporation

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

rect Rect A Rect structure specifying the location and size of the
rectangle to be cleared. Use VAL_ENTIRE_OBJECT to
specify the entire canvas.

Return Value

status integer Refer to Appendix A for error codes.

See also

MakeRect

CanvasDefaultPen

int status = CanvasDefaultPen (int panelHandle, int controlID);

Purpose

Sets all of the attributes of the canvas pen to the default values. The defaults are shown in the
following table.

Canvas Pen Attribute Default Value
ATTR_PEN_WIDTH 1
ATTR_PEN_STYLE VAL_SOLID

ATTR_PEN_COLOR VAL_BLACK

ATTR_PEN_FILL_COLOR VAL_BLACK

ATTR_PEN_MODE VAL_COPY_MODE

ATTR_PEN_PATTERN A solid pattern, expressed as an array of 8
unsigned characters, each of which is 0xFF.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-17 LabWindows/CVI User Interface Reference

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

Return Value

status integer Refer to Appendix A for error codes.

See Also

CanvasSetPenPosition, CanvasGetPenPosition, CanvasDrawLineTo

CanvasDimRect

int status = CanvasDimRect (int panelHandle, int controlID , Rect rect);

Purpose

Overlays a checkerboard pattern in the specified rectangular area of a canvas control. This has
the visual effect of dimming objects within the area.

The checkerboard pattern is drawn using current values of the following attribute.

ATTR_PEN_FILL_COLOR

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-18 © National Instruments Corporation

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

rect Rect A Rect structure specifying the location and size of the
area to be dimmed. Use VAL_ENTIRE_OBJECT to
specify the entire canvas.

Return Value

status integer Refer to Appendix A for error codes.

See also

MakeRect

CanvasDrawArc

int status = CanvasDrawArc (int panelHandle, int controlID , Rect rect,
int drawMode, int beginningAngle, int arcAngle);

Purpose

Draws an arc on the canvas control. The arc is defined by specifying a rectangle that encloses the
arc, along with a beginning angle (in tenths of degrees) and an arc angle (in tenths of degrees).

The arc is a section of an oval. A beginning angle of 0 indicates that the arc starts at the midpoint
of the right edge of the rectangle. The arc angle indicates how far around the oval (counter-
clockwise, up to 3600) the arc is drawn.

The frame of the arc is drawn using the current value of the following attributes:

ATTR_PEN_COLOR
ATTR_PEN_MODE
ATTR_PEN_WIDTH
ATTR_PEN_STYLE (ignored in Windows when pen width is greater than 1)

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-19 LabWindows/CVI User Interface Reference

The interior of the arc is drawn using the current value of the following attributes.

ATTR_PEN_FILL_COLOR
ATTR_PEN_MODE
ATTR_PEN_PATTERN

The frame of the arc does not include the radius lines going from the center of the oval to the end
points of the arc.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

rect Rect A Rect structure specifying the location and size of the
rectangle within which to draw the arc.

drawMode integer Specifies whether the arc's frame or interior (or both) are
drawn. Valid values:
VAL_DRAW_FRAME
VAL_DRAW_INTERIOR
VAL_DRAW_FRAME_AND_INTERIOR

beginningAngle integer The starting angle of the arc, in tenths of degrees.

0 indicates the arc starts at the midpoint of the right edge
of the rectangle. 900 indicates that the arc starts at the
midpoint of the top edge of the rectangle. Negative
values are valid.

arcAngle integer How far around the oval (counter-clockwise, up to 3600)
the arc is drawn. Specified in tenths of degrees. Negative
values are valid.

Return Value

status integer Refer to Appendix A for error codes.

See also

MakeRect, CanvasDrawOval

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-20 © National Instruments Corporation

CanvasDrawBitmap

int status = CanvasDrawBitmap (int panelHandle, int controlID , int bitmapID ,
Rect sourceRect, Rect destinationRect);

Purpose

Draws a bitmap image (or portion thereof) in the specified destination rectangle on the canvas
control.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

bitmapID integer The ID of the bitmap object containing the image. The ID
must have been obtained from NewBitmap ,
GetBitmapFromFile , GetCtrlBitmap ,
ClipboardGetBitmap ,
GetCtrlDisplayBitmap , or
GetPanelDisplayBitmap .

sourceRect Rect A Rect structure specifying the portion of the bitmap to
be drawn. The values are in terms of the pixel coordinates
of the bitmap. The origin (0, 0) is at the upper left corner
of the bitmap. Use VAL_ENTIRE_OBJECT to specify
the entire image.

destinationRect Rect A Rect structure specifying the size and location of the
area in which the bitmap image is to be drawn on the
canvas control. If sourceRect and destinationRect are
not the same size, the bitmap is stretched or shrunk to fit.

Return Value

status integer Refer to Appendix A for error codes.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-21 LabWindows/CVI User Interface Reference

Parameter Discussion

If you want the destination rectangle to be same size as the source rectangle, you can set the
height and width in destinationRect to VAL_KEEP_SAME_SIZE.

If you want the bitmap to stretch to fit the size of the canvas, pass VAL_ENTIRE_OBJECT as
destinationRect.

Example

The following code copies a bitmap image, without any stretching or shrinking, to the canvas
control, starting 20 pixels below the top edge of the canvas, and 30 pixels to the right of left edge
of the canvas.

CanvasDrawBitmap (panelHandle, controlID, bitmapID, VAL_ENTIRE_OBJECT,
MakeRect(20,30, VAL_KEEP_SAME_SIZE, VAL_KEEP_SAME_SIZE));

See also

MakeRect

CanvasDrawLine

int status = CanvasDrawLine (int panelHandle, int controlID , Point start,
Point end);

Purpose

Draws a line between two specified points.

The line is drawn using the current value of the following attributes.

ATTR_PEN_COLOR
ATTR_PEN_MODE
ATTR_PEN_WIDTH
ATTR_PEN_STYLE (ignored in Windows when pen width is greater than 1)

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-22 © National Instruments Corporation

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel function.

controlID integer The defined constant (located in the .uir header file) which
was assigned to the control in the User Interface Editor, or the
ID returned by the NewCtrl or DuplicateCtrl function.

start Point A Point structure specifying the location at which the line
begins.

end Point A Point structure specifying the location at which the line
ends.

Return Value

status integer Refer to Appendix A for error codes.

See also

MakePoint, CanvasDrawLineTo

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-23 LabWindows/CVI User Interface Reference

CanvasDrawLineTo

int status = CanvasDrawLineTo (int panelHandle, int controlID , Point end);

Purpose

Draws a line between the current pen position and a specified end point, and sets the pen position
to the end point.

The line is drawn using the current value of the following attributes.

ATTR_PEN_COLOR
ATTR_PEN_MODE
ATTR_PEN_WIDTH
ATTR_PEN_STYLE (ignored in Windows when pen width is greater than 1)

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel function.

controlID integer The defined constant (located in the .uir header file) which
was assigned to the control in the User Interface Editor, or the
ID returned by the NewCtrl or DuplicateCtrl function.

end Point A Point structure specifying the location at which the line
ends.

Return Value

status integer Refer to Appendix A for error codes.

See also

MakePoint, CanvasGetPenPosition, CanvasSetPenPosition, CanvasDefaultPen,
CanvasDrawLine

CanvasDrawOval

int status = CanvasDrawOval (int panelHandle, int controlID , Rect rect,
int drawMode);

Purpose

Draws an oval on the canvas control within the specified rectangle.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-24 © National Instruments Corporation

The frame of the oval is drawn using the current value of the following attributes.

ATTR_PEN_COLOR
ATTR_PEN_MODE
ATTR_PEN_WIDTH
ATTR_PEN_STYLE (ignored in Windows when pen width is greater than 1)

The interior of the oval is drawn using the current value of the following attributes:

ATTR_PEN_FILL_COLOR
ATTR_PEN_MODE
ATTR_PEN_PATTERN

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

rect Rect A Rect structure specifying the location and size of the
rectangle within which to draw the oval.

drawMode integer Specifies whether the oval’s frame or interior (or both) are
drawn. Valid values:
VAL_DRAW_FRAME
VAL_DRAW_INTERIOR
VAL_DRAW_FRAME_AND_INTERIOR

Return Value

status integer Refer to Appendix A for error codes.

See also

MakeRect, CanvasDrawArc

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-25 LabWindows/CVI User Interface Reference

CanvasDrawPoint

int status = CanvasDrawPoint (int panelHandle, int controlID , Point point);

Purpose

Draws a point on the canvas control as the specified position.

The point is drawn using the current value of the following attributes:

ATTR_PEN_COLOR
ATTR_PEN_MODE
ATTR_PEN_WIDTH

At pen widths of greater than 1, the point may appear to be non-circular.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

point Point A Point structure specifying the location at which to draw
the point.

Return Value

status integer Refer to Appendix A for error codes.

See also

MakeRect, CanvasDrawArc

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-26 © National Instruments Corporation

CanvasDrawPoly

int status = CanvasDrawPoly (int panelHandle, int controlID , int numberOfPoints,
Point points[] , int wrap, int drawMode);

Purpose

Draws a polygon on the canvas control by connecting the specified points.

The frame of the polygon is drawn using the current value of the following attributes.

ATTR_PEN_COLOR
ATTR_PEN_MODE
ATTR_PEN_WIDTH
ATTR_PEN_STYLE (ignored in Windows when pen width is greater than 1)

The interior of the polygon is drawn using the current value of the following attributes.

ATTR_PEN_FILL_COLOR
ATTR_PEN_MODE
ATTR_PEN_PATTERN

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

numberOfPoints integer The number of vertices in the polygon.

points Point
array

An array of Point structures specifying the locations of
the vertices of the polygon.

wrap integer A nonzero value specifies that a line is drawn between
last point and first point, thereby closing the polygon
frame. This value is ignored when drawing only the
interior.

drawMode integer Specifies whether the polygon’s frame or interior (or
both) are drawn. Valid values:
VAL_DRAW_FRAME
VAL_DRAW_INTERIOR
VAL_DRAW_FRAME_AND_INTERIOR

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-27 LabWindows/CVI User Interface Reference

Return Value

status integer Refer to Appendix A for error codes.

CanvasDrawRect

int status = CanvasDrawRect (int panelHandle, int controlID , Rect rect,
int drawMode);

Purpose

Draws a rectangle on the canvas control.

The frame of the rectangle is drawn using the current value of the following attributes.

ATTR_PEN_COLOR
ATTR_PEN_MODE
ATTR_PEN_WIDTH
ATTR_PEN_STYLE (ignored in Windows when pen width is greater than 1)

The interior of the rectangle is drawn using the current value of the following attributes.

ATTR_PEN_FILL_COLOR
ATTR_PEN_MODE
ATTR_PEN_PATTERN

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

rect Rect A Rect structure specifying the location and size of the
rectangle to be drawn.

drawMode integer Specifies whether the rectangle’s frame or interior (or
both) are drawn. Valid values:
VAL_DRAW_FRAME
VAL_DRAW_INTERIOR
VAL_DRAW_FRAME_AND_INTERIOR

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-28 © National Instruments Corporation

Return Value

status integer Refer to Appendix A for error codes.

See also

MakeRect, CanvasDrawRoundedRect

CanvasDrawRoundedRect

int status = CanvasDrawRoundedRect (int panelHandle, int controlID , Rect rect,
int ovalHeight, int ovalWidth ,
int drawMode);

Purpose

Draws a rounded rectangle on the canvas control. Each corner of the rectangle is drawn as a
quadrant of an oval.

The frame of the rectangle is drawn using the current value of the following attributes.

ATTR_PEN_COLOR
ATTR_PEN_MODE
ATTR_PEN_WIDTH
ATTR_PEN_STYLE (ignored in Windows when pen width is greater than 1)

The interior of the rectangle is drawn using the current value of the following attributes.

ATTR_PEN_FILL_COLOR
ATTR_PEN_MODE
ATTR_PEN_PATTERN

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-29 LabWindows/CVI User Interface Reference

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

rect Rect A Rect structure specifying the location and size of the
rectangle to be drawn.

ovalHeight integer The vertical diameter of the oval whose quadrants are
drawn at the corners of the rounded rectangle.

ovalWidth integer The horizontal diameter of the oval whose quadrants are
drawn at the corners of the rounded rectangle.

drawMode integer Specifies whether the rectangle’s frame or interior (or
both) are drawn. Valid values:
VAL_DRAW_FRAME
VAL_DRAW_INTERIOR
VAL_DRAW_FRAME_AND_INTERIOR

Return Value

status integer Refer to Appendix A for error codes.

See also

MakeRect, CanvasDrawRect

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-30 © National Instruments Corporation

CanvasDrawText

int status = CanvasDrawText (int panelHandle, int controlID , char text[],
char metaFont[] , Rect bounds, int alignment);

Purpose

Draws a text string within a specified rectangular area on the canvas control. You can set the
alignment of the string within the rectangle. If the string exceeds the size of the rectangle, it is
clipped.

The text is drawn using the current value of the following attribute.

ATTR_PEN_COLOR

The background rectangle is drawn using the current value of the following attributes:

ATTR_PEN_FILL_COLOR
ATTR_PEN_MODE
ATTR_PEN_PATTERN

If you do not want the background rectangle to be drawn, set the ATTR_PEN_FILL_COLOR
attribute of the canvas control to VAL_TRANSPARENT.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

text string The text string to be drawn within the rectangle.

metaFont string Specifies the text font. Must be one of the predefined
metafonts (see Table 3-5 in this manual) or a metafont
created by a call to CreateMetaFont .

bounds Rect A Rect structure specifying location and size of the
background rectangle within which the text is drawn.

alignment integer Determines the placement of the text string within the
background rectangle. See discussion below.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-31 LabWindows/CVI User Interface Reference

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

The values in the bounds parameter are in terms of pixel coordinates, with the origin (0,0) at the
upper left corner of the canvas control.

If you want the size of the background rectangle to be adjusted automatically to the display size
of the text string, set height and width in the bounds parameter to VAL_KEEP_SAME_SIZE.

The valid values for the alignment parameters are listed in the following table.

Value Description

VAL_LOWER_LEFT Draw the string in the lower left corner of the background rectangle.
VAL_CENTER_LEFT Start the string from the midpoint of the left edge of the background

rectangle.
VAL_UPPER_LEFT Draw the string in the upper left corner of the background rectangle.
VAL_LOWER_CENTER Center the string just above the bottom edge of the background

rectangle.
VAL_CENTER_CENTERCenter the string in the middle of the background rectangle.
VAL_UPPER_CENTER Center the string just below the top edge of the background rectangle.
VAL_LOWER_RIGHT Draw the string in the lower right corner of the background rectangle.
VAL_CENTER_RIGHT Draw the string so that it ends just at the midpoint of the right edge of

the background rectangle.
VAL_UPPER_RIGHT Draw the string in the upper right corner of the background rectangle.

If the background rectangle specified by bounds is smaller than the text display size, the text is
clipped to the rectangle and the specified alignment is ignored. If the rectangle width is smaller
than the text display width, the text is displayed from the left. If the rectangle height is smaller
than the text display height, the text is displayed from the top.

See also

MakeRect, CanvasDrawTextAtPoint

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-32 © National Instruments Corporation

CanvasDrawTextAtPoint

int status = CanvasDrawTextAtPoint (int panelHandle, int controlID , char text[] ,
char metaFont[] , Point anchorPoint,
int alignment);

Purpose

Draws a text string at the specified location in the canvas control. The location is in terms of an
anchor point and an alignment around the point.

The text is drawn using the current value of the following attribute.

ATTR_PEN_COLOR

The background of the text is drawn using the current value of the following attributes:

ATTR_PEN_FILL_COLOR
ATTR_PEN_MODE
ATTR_PEN_PATTERN

If you do not want the background rectangle to be drawn, set the ATTR_PEN_FILL_COLOR
attribute of the canvas control to VAL_TRANSPARENT.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

text string The text string to be drawn at the anchor point.

metaFont string Specifies the text font. Must be one of the predefined
metafonts (see Table 3-5 in this manual) or a metafont
created by a call to CreateMetaFont .

anchorPoint Point A Point structure specifying location of the point at which
the text is drawn.

alignment integer Determines the placement of the text string in relation to
the anchor point. See discussion below.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-33 LabWindows/CVI User Interface Reference

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

Each alignment value refers to a point on the rectangle that implicitly encloses the text string.
The text string is placed so that the point indicated by the alignment parameter is at the location
specified the anchorPoint parameter. The valid values for the alignment parameter are listed in
the following table.

Value Description
VAL_LOWER_LEFT Draw the string so that lower left corner of its enclosing

rectangle is at the location specified by anchorPoint.
VAL_CENTER_LEFT Draw the string so that midpoint of the left edge of its

enclosing rectangle is at the location specified by
anchorPoint.

VAL_UPPER_LEFT Draw the string so that upper left corner of its enclosing
rectangle is at the location specified by anchorPoint.

VAL_LOWER_CENTER Draw the string so that midpoint of the bottom edge of
its enclosing rectangle is at the location specified by
anchorPoint.

VAL_CENTER_CENTER Draw the string so that center of its enclosing rectangle
is at the location specified by anchorPoint.

VAL_UPPER_CENTER Draw the string so that midpoint of the top edge of its
enclosing rectangle is at the location specified by
anchorPoint.

VAL_LOWER_RIGHT Draw the string so that lower right corner of its
enclosing rectangle is at the location specified by
anchorPoint.

VAL_CENTER_RIGHT Draw the string so that midpoint of the right edge of its
enclosing rectangle is at the location specified by
anchorPoint.

VAL_UPPER_RIGHT Draw the string so that upper right corner of its
enclosing rectangle is at the location specified by
anchorPoint.

See also

MakeRect, CanvasDrawText

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-34 © National Instruments Corporation

CanvasEndBatchDraw

int nestingDepth = CanvasEndBatchDraw (int panelHandle, int controlID);

Purpose

Ends the batch drawing started with CanvasStartBatchDraw .

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

Return Value

nestingDepth integer The number of calls to CanvasStartBatchDraw that
have not been matched by calls to
CanvasEndBatchDraw (including this call). A negative
value indicates that an error occurred. Refer to Appendix A
for error codes.

See also

CanvasStartBatchDraw

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-35 LabWindows/CVI User Interface Reference

CanvasGetClipRect

int status = CanvasGetClipRect (int panelHandle, int controlID , Rect * clipRect);

Purpose

Obtains the current clipping rectangle for the canvas control. All drawing operations are
restricted to the area in the clipping rectangle. Any drawing outside the clipping rectangle is not
shown. Exception: CanvasClear is not restricted to the clipping rectangle.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

Output clipRect Rect The Rect structure into which the location and size of the
clipping rectangle are stored. If clipping is disabled (the
default state), the height and width values in the structure
are set to zero.

Return Value

status integer Refer to Appendix A for error codes.

See Also

CanvasSetClipRect

CanvasGetPenPosition

int status = CanvasGetPenPosition (int panelHandle, int controlID , Point * point);

Purpose

Obtains the current position of the canvas pen.

Note: CanvasDrawLineTo is the only canvas drawing function that uses the pen position.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-36 © National Instruments Corporation

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

Output point Point The Point structure into which the current position of the
canvas pen is stored.

Return Value

status integer Refer to Appendix A for error codes.

See Also

CanvasSetPenPosition, CanvasDefaultPen, CanvasDrawLineTo

CanvasGetPixel

int status = CanvasGetPixel (int panelHandle, int controlID , Point pixelPoint,
int * pixelColor);

Purpose

Obtains the color of a single pixel on a canvas control.

Note: The canvas control maintains an internal bitmap reflecting all of the drawing
operations (except for drawing operations made while the ATTR_DRAW_POLICY
attribute is set to VAL_DIRECT_TO_SCREEN). There are times during which the
internal bitmap contains the result of recent drawing operations that have not yet been
reflected on the screen. This function obtains the pixel colors from the internal bitmap,
not from the screen.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-37 LabWindows/CVI User Interface Reference

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

pixelPoint Point A Point structure indicating the location of a pixel. The
location is in terms of unscaled pixel coordinates. The
origin (0,0) is the upper left corner of the canvas control.

Output pixelColor integer The RGB color value of the pixel at the specified point.

Return Value

status integer Refer to Appendix A for error codes.

See also

MakePoint, CanvasGetPixels

CanvasGetPixels

int status = CanvasGetPixels (int panelHandle, int controlID , Rect rect,
int pixelColors[]);

Purpose

Obtains the colors of the pixels in the specified rectangular area of a canvas control.

Note: The canvas control maintains an internal bitmap reflecting all of the drawing
operations (except for drawing operations made while the ATTR_DRAW_POLICY
attribute is set to VAL_DIRECT_TO_SCREEN). There are times during which the
internal bitmap contains the result of recent drawing operations that have not yet been
reflected on the screen. This function obtains the pixel colors from the internal bitmap,
not from the screen.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-38 © National Instruments Corporation

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

rect Rect The Rect structure specifying the location and size of the
rectangular area from which to obtain the pixel colors.

The location and size are expressed in terms of unscaled
pixel coordinates. The origin (0,0) is the upper left corner
of the canvas control. Use VAL_ENTIRE_OBJECT to
specify the entire canvas.

Output pixelColors integer
array

An array of RGB color values of the pixels in the specified
rectangle. See discussion below.

Parameter Discussion

The total number of elements in the pixelColors array should be equal to rect.height *
rect.width . The pixel color values are stored in row-major order. For example, if rect has the
following values,

rect.top 50

rect.left 60

rect.height 20

rect.width 15

then the color of pixel {x = 65, y = 58} is stored in pixel array at the following index.

(y - rect.top) * rect.width + (x - rect.left)

= (58-50)*15 + (65-60)

= 125

When using a rect.width of VAL_TO_EDGE, substitute the following for rect.width in the
above formula.

(total width of canvas) - rect.left

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-39 LabWindows/CVI User Interface Reference

Return Value

status integer Refer to Appendix A for error codes.

See also

MakePoint, CanvasGetPixel

CanvasInvertRect

int status = CanvasInvertRect (int panelHandle, int controlID , Rect rect);

Purpose

Inverts the colors in the specified rectangular area of a canvas control. The colors that result
from the inversion are dependent on the operating system. If you invert the same rectangle twice,
you are guaranteed to get the original colors back.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

rect Rect A Rect structure which specifies the location and size of
the rectangular area in which to invert the colors. Use
VAL_ENTIRE_OBJECT to specify the entire canvas.

Return Value

status integer Refer to Appendix A for error codes.

See also

MakeRect

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-40 © National Instruments Corporation

CanvasScroll

int status = CanvasScroll (int panelHandle, int controlID , Rect scrollRect,
int scrollAmountInXDirection , int scrollAmountInYDirection);

Purpose

Scrolls the contents of the specified rectangular area of a canvas control. The area that is exposed
by the scrolling is filled using the current value of the ATTR_PEN_FILL_COLOR attribute. The
contents of the canvas outside the specified rectangular area is not affected by the scrolling.

Parameters

Input panelHandle integer The specifier for a particular panel that is
contained in memory. This handle will have
been returned by the LoadPanel ,
NewPanel , or DuplicatePanel function.

controlID integer The defined constant (located in the .uir
header file) which was assigned to the control
in the User Interface Editor, or the ID returned
by the NewCtrl or DuplicateCtrl
function.

scrollRect Rect A Rect structure which specifies the location
and size of the rectangular area to scroll. Use
VAL_ENTIRE_OBJECT to specify the entire
canvas.

scrollAmountInXDirection integer The amount to scroll horizontally.

scrollAmountInYDirection integer The amount to scroll vertically.

Parameter Discussion

A positive value for scrollAmountInXDirection moves the contents of the rectangle to the
right. An area on the left side of the rectangle is thereby exposed. It is filled with the current
value of the ATTR_PEN_FILL_COLOR attribute.

A negative value for scrollAmountInXDirection moves the contents of the rectangle to the left.
An area on the right side of the rectangle is thereby exposed. It is filled with the current value of
the ATTR_PEN_FILL_COLOR attribute.

A positive value for scrollAmountInYDirection moves the contents of the rectangle down. An
area at the top of the rectangle is thereby exposed. It is filled with the current value of the
ATTR_PEN_FILL_COLOR attribute.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-41 LabWindows/CVI User Interface Reference

A negative value for scrollAmountInYDirection moves the contents of the rectangle the up. An
area at the bottom of the rectangle is thereby exposed. It is filled with the current value of the
ATTR_PEN_FILL_COLOR attribute.

See Also

MakeRect

CanvasSetClipRect

int status = CanvasSetClipRect (int panelHandle, int controlID , Rect clipRect);

Purpose

Sets the clipping rectangle for the canvas control. All drawing operations are restricted to the
area in the clipping rectangle. Any drawing outside the clipping rectangle is not shown.
Exception: CanvasClear is not restricted to the clipping rectangle.

Changing the clipping rectangle does not affect current contents of the canvas.

In the initial state for a canvas control, clipping is disabled.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

clipRect Rect A Rect structure specifying into the location and size of
the clipping rectangle. To disable clipping, set the height
and width of clipRect to zero, or use
VAL_EMPTY_RECT.

Return Value

status integer Refer to Appendix A for error codes.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-42 © National Instruments Corporation

See Also

CanvasGetClipRect

CanvasSetPenPosition

int status = CanvasSetPenPosition (int panelHandle, int controlID , Point point);

Purpose

Sets the position of the canvas pen.

Note: CanvasDrawLineTo is the only canvas drawing function that uses the pen position.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

point Point A Point structure specifying the new position of the canvas
pen.

Return Value

status integer Refer to Appendix A for error codes.

See Also

CanvasGetPenPosition, CanvasDefaultPen, CanvasDrawLineTo

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-43 LabWindows/CVI User Interface Reference

CanvasStartBatchDraw

int nestingDepth = CanvasStartBatchDraw (int panelHandle, int controlID);

Purpose

This function can be used to increase the drawing performance of the canvas control. In general,
it should be used whenever you want to make two or more consecutive calls to canvas drawing
functions. Each call to CanvasStartBatchDraw should be matched with a call to
CanvasEndBatchDraw .

Before drawing operations can be performed, certain operating system functions must be
invoked to prepare for drawing on the particular canvas. Without batch drawing, these system
functions must be called for each canvas drawing operation. With batch drawing, the system
functions are called only once for all of the drawing operations between
CanvasStartBatchDraw and the matching CanvasEndBatchDraw .

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

Return Value

nestingDepth integer The number of calls to CanvasStartBatchDraw
(including this call) that have not been matched by calls to
CanvasEndBatchDraw . A negative value indicates that
an error occurred. Refer to Appendix A for error codes.

Using This Function

The following code shows an example of how you would incorporate a sequence of drawing
operations on the same canvas control into one batch.

CanvasStartBatchDraw (panelHandle, controlID);
CanvasDrawLine (panelHandle, controlID, point1, point2);
CanvasDrawLine (panelHandle, controlID, point3, point4);
CanvasDrawRect (panelHandle, controlID, rect5);
CanvasEndBatchDraw (panelHandle, controlID);

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-44 © National Instruments Corporation

During a batch draw, you may call drawing operations on other canvas controls or call other
User Interface Library functions that perform drawing operations or process events. This has the
effect of implicitly ending the batch. The next time you call a drawing function on the same
canvas, the batch is implicitly restarted.

You may nest calls to CanvasStartBatchDraw .

Failure to properly match CanvasStartBatchDraw and CanvasEndBatchDraw calls can
negate the potential performance improvements but does not cause any other ill effects.

Note: If the ATTR_DRAW_POLICY attribute for the canvas control is set to
VAL_UPDATE_IMMEDIATELY, no update to the screen occurs until the batch is
ended. Also, changing values of the ATTR_DRAW_POLICY and
ATTR_OVERLAP_POLICY attributes during a batch draw has no effect until after the
batch is ended.

See also

CanvasEndBatchDraw

CanvasUpdate

int status = CanvasUpdate (int panelHandle, int controlID , Rect updateArea);

Purpose

Immediately updates on the screen the contents of the canvas control within the specified
rectangular area.

The canvas control maintains an internal bitmap reflecting all of the drawing operations (except
for drawing operations made while the ATTR_DRAW_POLICY attribute is set to
VAL_DIRECT_TO_SCREEN). Maintaining the internal bitmap ensures that the canvas is
redrawn correctly when it is exposed.

This function copies the content of the specified area in the internal bitmap to the canvas control.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-45 LabWindows/CVI User Interface Reference

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel function.

controlID integer The defined constant (located in the .uir header file) which
was assigned to the control in the User Interface Editor, or the
ID returned by the NewCtrl or DuplicateCtrl function.

updateArea Rect A Rect structure specifying the location and size of the
rectangular to be updated from the internal bitmap. Use
VAL_ENTIRE_OBJECT to specify the entire canvas control.

Return Value

status integer Refer to Appendix A for error codes.

See also

MakeRect

CheckListItem

int status = CheckListItem (int panelHandle, int controlID , int itemIndex,
int checked);

Purpose

This function places a check by, or removes a check from, the specified list item. It applies only
to list boxes with the check mode attribute set.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel function.

controlID integer The defined constant (located in the .uir header file) which
was assigned to the control by the User Interface Editor, or the
ID returned by the NewCtrl or DuplicateCtrl function.

itemIndex integer The zero-based index into the list where the item will be
placed.

checked integer Specifies whether or not the specified list item is checked.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-46 © National Instruments Corporation

Return Value

status integer Refer to Appendix A for error codes.

ClearAxisItems

int status = ClearAxisItems (int panelHandle, int controlID , int axis);

Purpose

This function deletes all string/value pairs from the list of label strings for a graph or strip chart
axis.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

axis integer Specifies the axis from which to delete all of the
string/value pair(s). Valid values:
VAL_XAXIS
VAL_LEFT_YAXIS
VAL_RIGHT_YAXIS (graphs only)

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-47 LabWindows/CVI User Interface Reference

Return Value

status integer Refer to Appendix A for error codes.

See Also

InsertAxisItem, ReplaceAxisItem, DeleteAxisItem, GetNumAxisItems

ClearListCtrl

int status = ClearListCtrl (int panelHandle, int controlID);

Purpose

This function clears all list items from the specified list control.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

Return Value

status integer Refer to Appendix A for error codes.

ClearStripChart

int status = ClearStripChart (int panelHandle, int controlID);

Purpose

Clears all traces from a strip chart control.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-48 © National Instruments Corporation

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

Return Value

status integer Refer to Appendix A for error codes.

ClipboardGetBitmap

int status = ClipboardGetBitmap (int * bitmapID , int * available);

Purpose

Determines whether or not a bitmap image is available on the system clipboard and optionally
retrieves a copy of the bitmap. The bitmap ID can then be passed to any function that accepts a
bitmap, such as CanvasDrawBitmap .

You can discard the bitmap by passing its ID to DiscardBitmap .

Parameters

Output bitmapID integer An ID that serves as a handle to the bitmap copied from
the clipboard. It is set to NULL if there is no bitmap on the
clipboard. If you not want a copy of the bitmap, pass
NULL.

available integer Is set to 1 if a bitmap is available on the system clipboard,
0 otherwise. You may pass NULL for this parameter.

Return Value

status integer Refer to Appendix A for error codes.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-49 LabWindows/CVI User Interface Reference

See Also

ClipboardPutBitmap, ClipboardGetText, GetBitmapData, SetCtrlBitmap,
PlotBitmap, CanvasDrawBitmap, DiscardBitmap.

ClipboardGetText

int status = ClipboardGetText (char ** text, int * available);

Purpose

Determines whether or not a text string is available on the system clipboard and optionally
retrieves a copy of the text.

When the copy of the text is no longer needed, you should free it by calling the free function.

Parameters

Output text string A pointer to the nul-terminated string copied from the
clipboard. It is set to NULL if there is no text on the
clipboard. If you not want a copy of the text, pass NULL.

available integer Is set to 1 if a text string is available on the system
clipboard, 0 otherwise. You may pass NULL for this
parameter.

Return Value

status integer Refer to Appendix A for error codes.

See Also

ClipboardPutText, ClipboardGetBitmap.

ClipboardPutBitmap

int status = ClipboardPutBitmap (int bitmapID);

Purpose

Copies a bitmap image onto the system clipboard.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-50 © National Instruments Corporation

Parameter

Input bitmapID integer The ID of the bitmap object containing the image. The ID
must have been obtained from NewBitmap ,
GetBitmapFromFile , GetCtrlBitmap ,
ClipboardGetBitmap , GetCtrlDisplayBitmap ,
or GetPanelDisplayBitmap .

Return Value

status integer Refer to Appendix A for error codes.

See Also

ClipboardGetBitmap, ClipboardPutText, NewBitmap, GetBitmapFromFile,
GetCtrlBitmap, GetCtrlDisplayBitmap, GetPanelDisplayBitmap,
ClipboardGetBitmap.

ClipboardPutText

int status = ClipboardPutText (char text[]);

Purpose

Copies a text string onto the system clipboard.

Parameter

Input text string A nul-terminated string.

Return Value

status integer Refer to Appendix A for error codes.

See Also

ClipboardGetText, ClipboardPutBitmap

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-51 LabWindows/CVI User Interface Reference

ConfigurePrinter

int status = ConfigurePrinter (char printFile [] , int orientation, int imageWidth,
int imageHeight, int ejectAfter);

Purpose

Sets the orientation, height, width, and eject after print attributes. See Table 3-27, Hard Copy
Attributes, in Chapter 3, Programming with the User Interface Library, for more information on
printing attributes.

This function is retained for compatibility with LabWindows for DOS. It is superseded by
SetPrintAttribute .

Parameters

Input printFile string Is ignored in LabWindows/CVI because the print file is
specified at the system level.

orientation integer The orientation of the image on the page.
Valid Value: 1 = VAL_PORTRAIT
 2 = VAL_LANDSCAPE

imageWidth integer The width of the image in millimeter/10 or
VAL_USE_PRINTER_DEFAULT or
VAL_INTEGRAL_SCALE

imageHeight integer The height of the image in millimeter/10 or
VAL_USE_PRINTER_DEFAULT or
VAL_INTEGRAL_SCALE

ejectAfter integer Determines if the next output will be ejected from the
printer. While ejectAfter is set to zero, outputs will
print on the same page until ejectAfter is set to one.

Return Value

status integer Refer to Appendix A for error codes.

ConfirmPopup

int status = ConfirmPopup (char title [] , char message[]);

Purpose

Displays a prompt message in a dialog box and waits for the user to select the Yes or No button.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-52 © National Instruments Corporation

Parameters

Input title string The title of the dialog box.

message string The message displayed on the dialog box.

Return Value

status integer Refer to Appendix A for error codes.

Return Codes

1 user selected Yes.
0 user selected No.

CreateMetaFont

int status = CreateMetaFont (char newMetaFontName[] , char existingFontName[] ,
int pointSize, int bold, int italics, int underlined,
int strikeout);

Purpose

Creates a new meta font based on a pre-defined National Instruments font, an existing metafont,
or a font supplied by the operating system. Metafonts contain typeface information, point size,
and text style.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-53 LabWindows/CVI User Interface Reference

Parameters

Input newMetaFontName string The name to be associated with the new meta
font.

existingFontName string The name of the existing font on which the new
meta font is based. The font may be one of the
National Instrument fonts, a user-defined font
saved by a previous CreateMetaFont
function call, or a font supplied by the operating
system.

pointSize integer The point size of the new meta font. Any
positive integer value is valid.

bold integer Indicates whether or not the newly created meta
font will have bold text.
0 = not bold
1 = bold

italics integer Indicates whether or not the newly created meta
font will have italicized text.
0 = not italics
1 = italics

underlined integer Indicates whether or not the newly created meta
font will have underlined text.
0 = not underlined
1 = underlined

strikeout integer Indicates whether or not the newly created meta
font will have strikeout text.
0 = not strikeout
1 = strikeout

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

The following are examples of values that can be passed to existingFontName.

VAL_7SEG_META_FONT
VAL_DIALOG_FONT
"Courier"

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-54 © National Instruments Corporation

DefaultCtrl

int status = DefaultCtrl (int panelHandle, int controlID);

Purpose

This function restores a control to its default value.

If the control is visible, it is updated to reflect its default value. You assign default values to
controls in the User Interface Editor or through the SetCtrlAttribute function.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

Return Value

status integer Refer to Appendix A for error codes.

DefaultPanel

int status = DefaultPanel (int panelHandle);

Purpose

Restores all panel controls to their default values.

If the panel is visible, it is updated to reflect the new control values. You assign default values to
controls in the User Interface Editor or through the SetCtrlAttribute function using
ATTR_DFLT_VALUE.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-55 LabWindows/CVI User Interface Reference

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel function.

Return Value

status integer Refer to Appendix A for error codes.

DeleteAxisItem

int status = DeleteAxisItem (int panelHandle, int controlID , int axis,
int itemIndex, int numberOfItems);

Purpose

Deletes one or more string/value pairs from the list of label strings for a graph or strip chart axis.
These strings appear in place of the numerical labels. They appear at the location of their
associated values on the graph or strip chart.

To see string labels on an X axis, you must set the ATTR_XUSE_LABEL_STRINGS attribute to
TRUE. To see string labels on a Y axis, you must set the ATTR_YUSE_LABEL_STRINGS
attribute to TRUE.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

axis integer Specifies the axis from which to delete the selected
string/value pair(s). Valid values:
VAL_XAXIS
VAL_LEFT_YAXIS
VAL_RIGHT_YAXIS (graphs only)

itemIndex integer The zero-based index of the first item to be deleted.

numberOfItems string The number of items to delete.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-56 © National Instruments Corporation

Return Value

status integer Refer to Appendix A for error codes.

See Also

InsertAxisItem, ReplaceAxisItem, ClearAxisItems, GetNumAxisItems

DeleteGraphPlot

int status = DeleteGraphPlot (int panelHandle, int controlID , int plotHandle,
int refresh);

Purpose

Deletes one or all plots from a graph control.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

plotHandle integer The handle for the particular plot to delete or -1 to
delete all plots in the graph control.

refresh integer Selects when to refresh the graph control. The
following choices are valid:
VAL_DELAYED_DRAW Delayed Draw.
VAL_IMMEDIATE_DRAW Immediate Draw.
VAL_NO_DRAW No Draw.

Return Value

status integer Refer to Appendix A for error codes.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-57 LabWindows/CVI User Interface Reference

Parameter Discussion

plotHandle will have been returned by one of the following functions.

PlotX
PlotY
PlotXY
PlotWaveform
PlotPoint
PlotText
PlotLine
PlotRectangle
PlotPolygon
PlotOval
PlotArc
PlotIntensity
PlotBitmap

If refresh is set to Delayed Draw, the deleted plot remains on the graph until one of the
following actions takes place.

• Graph is rescaled.

• Size of the plot area is changed.

• Graph is overlapped.

• Graph is made visible after it was hidden.

• ATTR_REFRESH_GRAPH is set to 1 when it was previously 0.

• RefreshGraph function is called.

• Another plot is directed to the graph while ATTR_REFRESH_GRAPH is 1.

When one of the above events occurs, the entire plot area is redrawn.

If refresh is set to VAL_IMMEDIATE_DRAW, the plot area is redrawn immediately and the
deleted plot is removed from the graph.

If refresh is set to VAL_NO_DRAW, the deleted plot remains on the graph until one of the
following actions takes place.

• Graph is rescaled.

• Size of the plot area is changed.

• Graph is overlapped when ATTR_SMOOTH_UPDATE is 0.

• Graph is made visible when ATTR_SMOOTH_UPDATE is 0 after it was hidden.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-58 © National Instruments Corporation

DeleteImage

int status = DeleteImage (int panelHandle, int controlID);

Purpose

Removes an image from the specified picture control and from memory.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

Return Value

status integer Refer to Appendix A for error codes.

DeleteListItem

int status = DeleteListItem (int panelHandle, int controlID , int itemIndex,
int numberofItems);

Purpose

Deletes one or more items from a list control starting at Item Index.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-59 LabWindows/CVI User Interface Reference

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

itemIndex integer The zero-based index of the first item to be deleted.

numberofItems integer The number of items to delete. To delete all items from
itemIndex to the end, enter -1 for numberofItems.

Return Value

status integer Refer to Appendix A for error codes.

DeleteTextBoxLine

int status = DeleteTextBoxLine (int panelHandle, int controlID , int lineIndex);

Purpose

This function removes the line of text at the specified index.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

lineIndex integer The zero-based index of the text box line to be deleted.

Return Value

status integer Refer to Appendix A for error codes.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-60 © National Instruments Corporation

DirSelectPopup

int status = DirSelectPopup (char defaultDirectory [] , char title [] , int allowCancel,
int allowMakeDirectory , char pathName[]);

Purpose

Displays a file-selection dialog box and waits for the user to select a directory or cancel.

Parameters

Input defaultDirectory string The initial directory. If "" is entered, then the
current working directory is used.

title string The title of the dialog box.

allowCancel integer If non-zero, the user can cancel out of the dialog
box. If zero, the user must make a selection.

allowMakeDirectory integer If non-zero, the user is allowed to create a new
directory.

Output pathname string The buffer in which the user's selection is
returned. The buffer must be at least
MAX_PATHNAME_LEN bytes long.

Return Value

status integer Refer to Appendix A for error codes.

Return Codes

0 VAL_NO_DIRECTORY_SELECTED

1 VAL_DIRECTORY_SELECTED

Parameter Discussion

The maximum length of defaultDirectory is MAX_PATHNAME_LEN characters, including the
ASCII NUL byte.

The maximum length of title is 255 excluding the ASCII NUL byte.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-61 LabWindows/CVI User Interface Reference

DiscardBitmap

int status = DiscardBitmap (int bitmapID);

Purpose

Discards a bitmap object.

Parameter

Input bitmapID integer The ID of the bitmap object. The ID must have been
obtained from NewBitmap , GetBitmapFromFile ,
GetCtrlBitmap , ClipboardGetBitmap ,
GetCtrlDisplayBitmap , or
GetPanelDisplayBitmap .

Return Value

status integer Refer to Appendix A for error codes.

See Also

NewBitmap, GetBitmapFromFile, GetCtrlBitmap, GetCtrlDisplayBitmap,
GetPanelDisplayBitmap, ClipboardGetBitmap.

DiscardCtrl

int status = DiscardCtrl (int panelHandle, int controlID);

Purpose

This function removes a control from the specified panel and from memory.

When discarding a control from its own callback function, you can call DiscardCtrl only
when responding to the EVENT_COMMIT event. Discarding the control from its own callback
function in response to other events may cause unpredictable behavior.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-62 © National Instruments Corporation

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

Return Value

status integer Refer to Appendix A for error codes.

DiscardMenu

int status = DiscardMenu (int menuBarHandle, int menuID);

Purpose

This function removes the specified menu and its sub-menus and items from the menu bar.

Parameters

Input menuBarHandle integer The specifier for a particular menu bar that is currently
in memory. This handle will have been returned by
LoadMenuBar or NewMenuBar.

menuID integer The ID for a particular menu within a menu bar.
The Menu ID should be a constant name (located in the
.uir header file) generated by the User Interface
Editor or a value returned by the NewMenu function.

Return Value

status integer Refer to Appendix A for error codes.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-63 LabWindows/CVI User Interface Reference

DiscardMenuBar

int status = DiscardMenuBar (int menuBarHandle);

Purpose

Removes the specified menu bar from every panel on which it resides and from memory.

Parameters

Input menuBarHandle integer The specifier for a particular menu bar that is currently
in memory. This handle will have been returned by
LoadMenuBar or NewMenuBar.

Return Value

status integer Refer to Appendix A for error codes.

DiscardMenuItem

int status = DiscardMenuItem (int menuBarHandle, int menuItemID);

Purpose

This function removes a menu item from the specified menu and from memory.

Parameters

Input menuBarHandle integer The specifier for a particular menu bar that is currently
in memory. This handle will have been returned by
LoadMenuBar or NewMenuBar.

menuItemID integer The ID used to reference this menu item.
The Menu Item ID will have been generated by the
User Interface Editor or returned by the
NewMenuItem function.

Return Value

status integer Refer to Appendix A for error codes.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-64 © National Instruments Corporation

DiscardPanel

int status = DiscardPanel (int panelHandle);

Purpose

Removes a panel from memory and clears it from the screen if visible.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

Return Value

status integer Refer to Appendix A for error codes.

DiscardSubMenu

int status = DiscardSubMenu (int menuBarHandle, int subMenuID);

Purpose

This function removes a submenu from the specified menu bar and from memory.

Parameters

Input menuBarHandle integer The specifier for a particular menu bar that is currently
in memory. This handle will have been returned by
LoadMenuBar or NewMenuBar

subMenuID integer The ID for a particular sub-menu within a menu bar.
The subMenuID will have been a constant name
generated by the User Interface Editor or a value
returned by the NewSubMenu function.

Return Value

status integer Refer to Appendix A for error codes.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-65 LabWindows/CVI User Interface Reference

DisplayImageFile

int status = DisplayImageFile (int panelHandle, int controlID , char filename[]);

Purpose

Displays the contents of an image file on a specified picture control.

Supported image types:

PCX: Windows and UNIX
BMP, DIB , RLE, ICO: Windows only
WMF: Windows 95 and NT only
XWD: UNIX only

To display an image, first create a picture control in the User Interface Editor or with the
NewCtrl function. Then call the DisplayImageFile function using the control ID.

To delete the image, call the DeleteImage function (which also removes it from memory.)

To replace the current image with another, simply call DisplayImageFile for the same
picture control with a different image file.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

filename string The name of the image file which contains the image.
If the name is a simple filename (in other words,
contains no directory path), then the file is loaded from
the project. If it is not found in the project, the file is
loaded from the directory containing the project.

Return Value

status integer Refer to Appendix A for error codes.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-66 © National Instruments Corporation

DisplayPCXFile

int controlID = DisplayPCXFile (char filename[] , int controlTop, int controlLeft);

Purpose

Displays the contents of an image file in a new picture control on the DOS Compatibility
window at the given x and y coordinates. Window coordinates may be any value between 0 and
32767, with the origin in the upper left corner directly beneath the title bar before the panel is
scrolled. These picture controls will be overlapped by child panels of this window. If the DOS
Compatibility window has not yet been created, DisplayPCXFile will create it.

Supported image types:

PCX: Windows and UNIX
BMP, DIB , RLE, ICO: Windows only
WMF: Windows 95 and NT only
XWD: UNIX only

Note: This function has been replaced by DisplayImageFile , and should be translated
by the user. Repeated use of this function will clutter the panel with redundant
controls.

Parameters

Input filename string The name of the image file which contains the image.
If the name is a simple filename (in other words,
contains no directory path), then the file is loaded from
the project. If it is not found in the project, the file is
loaded from the directory containing the project.

controlTop integer The coordinate of the top edge of the image.

controlLeft integer The coordinate of the left edge of the image.

Return Value

controlID integer Returns the ID used to specify this control in
subsequent function calls. Negative values indicate that
an error occurred. Refer to Appendix A for error codes.

DisplayPanel

int status = DisplayPanel (int panelHandle);

Purpose

Displays a panel on the screen.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-67 LabWindows/CVI User Interface Reference

When a panel is visible and not dimmed, the user can operate it and events can be generated
from it. Calling DisplayPanel when a panel is already displayed will cause the panel to be
completely redrawn.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

Return Value

status integer Refer to Appendix A for error codes.

DOSColorToRGB

int status = DOSColorToRGB (int lwDOSColor);

Purpose

Translates the 16 standard color values from LabWindows/DOS to RGB values as shown in the
following table.

LW/DOS LW/CVI

 0 (black) VAL_BLACK = 0x000000L

 1 (dark blue) VAL_DK_BLUE = 0x000080L

 2 (dark green) VAL_DK_GREEN = 0x008000L

 3 (dark cyan) VAL_DK_CYAN = 0x008080L

 4 (dark red) VAL_DK_RED = 0x800000L

 5 (dark magenta) VAL_DK_MAGENTA = 0x800080L

 6 (brown) VAL_DK_YELLOW = 0x808000L

 7 (gray) VAL_LT_GRAY = 0xCCCCCCL

 8 (dark gray) VAL_DK_GRAY = 0x808080L

 9 (blue) VAL_BLUE = 0x0000FFL

(continues)

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-68 © National Instruments Corporation

(Continued)

LW/DOS LW/CVI

10 (green) VAL_GREEN = 0x00FF00L

11 (cyan) VAL_CYAN = 0x00FFFFL

12 (red) VAL_RED = 0xFF0000L

13 (magenta) VAL_MAGENTA = 0xFF00FFL

14 (yellow) VAL_YELLOW = 0xFFFF00L

15 (white) VAL_WHITE = 0xFFFFFFL

Parameters

Input lwDOSColor integer One of the 16 standard colors from LabWindows/DOS.

Return Value

status integer Refer to Appendix A for error codes.

DOSCompatWindow

int panelHandle = DOSCompatWindow (void);

Purpose

Displays a window which serves as a parent panel for DOS LabWindows panels.

A panel handle is returned that is used by the parentPanelHandle parameter in the Load Panel
function. This function can be used with DOS LabWindows .uir files to retain the appearance
of the DOS User Interface screen.

This function exists as an aid for converting LabWindows for DOS applications. It should not be
used when developing new applications in LabWindows/CVI.

Return Value

panelHandle integer Returns an integer specifier (panel handle) for the DOS
Compatibility Window. A negative number indicates that an
error occurred. Refer to Appendix A for error codes.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-69 LabWindows/CVI User Interface Reference

DuplicateCtrl

int newID = DuplicateCtrl (int sourcePanelHandle, int controlID ,
int destinationPanelHandle, char duplicateLabel[] ,
int controlTop, int controlLeft);

Purpose

This function copies an existing control from the source panel to the destination panel and
returns a control ID which is used to reference the control in subsequent function calls.

Parameters

Input sourcePanelHandle integer The handle of the source panel containing the
control to be duplicated. This handle will have
been returned by the LoadPanel , NewPanel ,
or DuplicatePanel function.

controlID integer The defined constant (located in the .uir header
file) which was assigned to the control by the
User Interface Editor, or the ID returned by the
NewCtrl or DuplicateCtrl function.

destinationPanelHandle integer Specifies the parent panel handle into which the
duplicate control is copied. This handle will have
been returned by the LoadPanel , NewPanel ,
or DuplicatePanel function.

duplicateLabel string The label for the duplicate control. Pass "" for no
label. Pass 0 to use the label of the source
control.

controlTop integer The vertical coordinate at which the upper left
corner of the control (not including labels) is
placed.

controlLeft integer The horizontal coordinate at which the upper left
corner of the control (not including labels) is
placed.

Return Value

newID integer Returns the ID used to specify the new
(duplicate) control in subsequent function calls.
Refer to Appendix A for error codes.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-70 © National Instruments Corporation

Parameter Discussion

The valid range for controlTop and controlLeft is -32,768 to 32,767 or
VAL_KEEP_SAME_POSITION. The origin (0,0) is at the upper-left corner of the panel
(directly below the title bar) before the panel is scrolled.

DuplicatePanel

int status = DuplicatePanel (int destParentPanelHandle, int originalPanelHandle,
char duplicatePanelTitle[] , int panelTop, int panelLeft);

Purpose

This function duplicates a panel into the specified destination parent panel and returns the
duplicate (new) panel handle.

Parameters

Input destParentPanelHandle integer The handle for the parent panel into which the
duplicate panel is copied. To make the panel a
top-level panel, enter 0.

originalPanelHandle integer The handle of the original panel to be
duplicated. This handle will have been returned
by the LoadPanel , NewPanel , or
DuplicatePanel function.

duplicatePanelTitle string The title of the duplicate (new) panel. Pass ""
for no title. Pass 0 to use the same title as the
original panel.

panelTop integer The vertical coordinate at which the upper left
corner of the panel (directly below the title bar)
is placed. Pass VAL_KEEP_SAME_POSITION
to keep the same top coordinate as the original
panel.

panelLeft integer The horizontal coordinate at which the upper
left corner of the panel (directly below the title
bar) is placed. Pass
VAL_KEEP_SAME_POSITION to keep the
same left coordinate as the original panel.

Return Value

status integer Refer to Appendix A for error codes.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-71 LabWindows/CVI User Interface Reference

Parameter Discussion

For a top-level panel, (0,0) is the upper-left corner of the screen. For a child panel, (0,0) is the
upper-left corner of the parent panel (directly below the title bar) before the parent panel is
scrolled. The panelTop and panelLeft coordinates must be integer values from -32768 to
32767, or VAL_AUTO_CENTER to center the panel.

EmptyMenu

int status = EmptyMenu (int menuBarHandle, int menuID);

Purpose

This function removes all sub-menus and menu items from the specified menu.

Parameters

Input menuBarHandle integer The specifier for a particular menu bar that is
currently in memory. This handle will have been
returned by LoadMenuBar or NewMenuBar.

menuID integer The ID for a particular menu within a menu bar.
The Menu ID should be a constant name
(located in the .uir header file) generated by
the User Interface Editor or a value returned by
the NewMenu function.

Return Value

status integer Refer to Appendix A for error codes.

EmptyMenuBar

int status = EmptyMenuBar (int menuBarHandle);

Purpose

This function removes all menus and menu items from the specified menu bar but retains the
menu bar handle in memory.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-72 © National Instruments Corporation

Parameters

Input menuBarHandle integer The specifier for a particular menu bar that is
currently in memory. This handle will have been
returned by LoadMenuBar or NewMenuBar.

Return Value

status integer Refer to Appendix A for error codes.

FakeKeystroke

int status = FakeKeystroke (int keyCode);

Purpose

Simulates a keystroke.

Note: The order in which the keystroke is received in relation to other events is not defined,
so you must use this function with care.

Parameters

Input keyCode integer Key codes are formed by a logical OR operation on
values representing a modifier key and either an ASCII
character or a virtual key. See Table 3-7 in Chapter 3
for modifier and virtual keys.

Return Value

status integer Refer to Appendix A for error codes.

FileSelectPopup

int status = FileSelectPopup (char defaultDirectory [] , char defaultFileSpec[] ,
char fileTypeList [] char title [] , int buttonLabel,
int restrictDirectory , int restrictExtension,
int allowCancel, int allowMakeDirectory ,
char pathName[]);

Purpose

Displays a file-selection dialog box and waits for the user to select a file or cancel.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-73 LabWindows/CVI User Interface Reference

Parameters

Input defaultDirectory string The initial directory. If "" is entered, then the
current working directory will be used.

defaultFileSpec string A string that specifies which files to display.
For example, "*.c" would cause all files with
the extension .c to be displayed.

fileTypeList string A list of file types, separated by semicolons, to
be contained in the File Type List of the File
Select Pop-up when restrictExtension is
FALSE. For example, "*.c;*.h" allows the
user to select "*.c" or "*.h" from the File
Type List. ("*.*" is always available).

title string The title of the dialog box.

buttonLabel integer Selects the label for the file select button. The
choices are:
"OK" = VAL_OK_BUTTON
"Save" = VAL_SAVE_BUTTON
"Select" = VAL_SELECT_BUTTON
(affects existing files only)
"Load" = VAL_LOAD_BUTTON (affects
existing files only) .

restrictDirectory integer If non-zero, the user cannot change directories
or drives. If zero, the user can change
directories or drives.

restrictExtension integer If non-zero, the user is limited to files with the
default extension. If zero, the user can select
files with any extension.

allowCancel integer If non-zero, the user can cancel out of the File
Select Popup. If zero, the user can leave the
pop-up only by making a selection.

allowMakeDirectory integer If non-zero, allows the user to make a new
directory from the File Select Popup. This is
useful when a user wants to save a file into a
new directory.

Output pathName string The buffer in which the user's selection is
returned. The buffer must be at least
MAX_PATHNAME_LEN bytes long.

Return Value

status integer Refer to Appendix A for error codes.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-74 © National Instruments Corporation

Return Codes

0 VAL_NO_FILE_SELECTED

1 VAL_EXISTING_FILE_SELECTED

2 VAL_NEW_FILE_SELECTED

Parameter Discussion

The defaultfilespec is shown in the file name control when the pop-up is first displayed. If you
specify an actual file name, such as test.c , that name appears in the file name box and also in
the file list box. The default file specification (spec) cannot contain a directory path.

You need to declare the pathName string to be a least MAX_PATHNAME_LEN bytes long..

FontSelectPopup

int status = FontSelectPopup (char title [], char sampleText[],
int monospacedFontsOnly, char typefaceName[],
int * bold, int * underline, int * strikeOut , int * italic ,
int * justification , int * textColor, int * fontSize,
int minimumFontSize, int maximumFontSize,
int showDefaultButton, int allowMetaFonts);

Brings up a dialog which allows the user to specify font settings.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-75 LabWindows/CVI User Interface Reference

Parameters

Input title string The title to be displayed on the dialog box.
The maximum length is 255 characters.

sampleText string The sample text to be displayed in the font
select pop-up as demonstration of how the
settings will affect the appearance of text.

monospacedFontsOnly integer If nonzero, the user can select only
monospaced (fixed width) fonts. If zero, the
user may select any font.

minimumFontSize integer The minimum value allowed in the 'Font Size'
control.

maximumFontSize integer The maximum value allowed in the 'Font
Size' control.

 showDefaultButton integer If zero, the default button is hidden. If
non-zero, the default button is shown. When
the default button is pushed, the value of
every control on the pop-up is set to the
values specified in the last call to
SetFontPopupDefaults .

allowMetaFonts integer If zero, the National Instruments supplied
metafonts are not listed in the typeface
selection ring. If nonzero, the metafonts are
listed.

Input/
Output

typefaceName string On input, this buffer contains the typeface
name (for example, "Courier") to be initially
displayed in the selection ring . On output,
this buffer contains the typeface name the
user has selected. The buffer must be at least
256 bytes long. Pass 0 to hide the typeface
selection ring and prevent the user from
changing the typeface.

bold integer On input, the value to initially set in the 'Bold'
checkbox. On output, the final value in the
'Bold' checkbox. Pass 0 to hide the 'Bold'
checkbox.

(continues)

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-76 © National Instruments Corporation

Parameters (Continued)

underline integer On input, the value to initially set in the
'Underline' checkbox. On output, the final
value in the 'Underline' checkbox. Pass 0 to
hide the 'Underline' checkbox.

strikeOut integer On input, the value to initially set in the
'StrikeOut' checkbox. On output, the final
value in the 'StrikeOut' checkbox. Pass 0 to
hide the 'StrikeOut' checkbox.

italic integer On input, the value to initially set in the
'Italic' checkbox. On output, the final value in
the 'Italic' checkbox. Pass 0 to hide the 'Italic'
checkbox.

justification integer On input, the value to initially set in the
'Justification' ring control. On output, the final
value in the 'Justification' ring control. Pass 0
to hide the 'Justification' ring control.

textColor integer On input, the value to initially set in the 'Text
Color' control. On output, the final value in
the 'Text Color' control. Pass 0 to hide the
'Text Color' control.

fontSize integer On input, the value to initially set in the 'Font
Size' control. On output, the final value in the
'Font Size' control. Pass 0 to hide the 'Font
Size' control.

Return Value

status integer Refer to Appendix A for error codes.

Return Codes

0 User canceled out of dialog box

1 User modified the settings

Parameter Discussion

The valid values for justification are

VAL_LEFT_JUSTIFIED
VAL_RIGHT_JUSTIFIED

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-77 LabWindows/CVI User Interface Reference

VAL_CENTER_JUSTIFIED

textColor is an RGB value. An RGB value is an integer in the hexadecimal format
0x00RRGGBB, where RR, GG, and BB are the respective red, green, and blue components of
the color value.

fontSize is specified in units of points.

If the user cancels out of the dialog box or the function returns an error code, none of the
Input/Output parameters are modified.

See Also

SetFontPopupDefaults.

GenericMessagePopup

int status = GenericMessagePopup (char title [] , char message[] , char
buttonLabel1[] , char buttonLabel2[] , char
buttonLabel3[] ,
char responseBuffer[] , int maxResponseLength,
int buttonAlignment , int activeControl,
int enterButton, int escapeButton);

Purpose

This function displays a dialog box with a user-defined message and optionally accepts a
response string.

Up to three buttons are provided for generic use. The function returns a value indicating which
button was pressed.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-78 © National Instruments Corporation

Parameters

Input title string The title of the dialog box.

message string The message displayed on the dialog box.

buttonLabel1 string The label on button 1.

buttonLabel2 string The label on button 2. To hide buttons 2 and 3,
pass 0 to Button Label 2.

buttonLabel3 string The label on button 3. To hide button 3, pass 0
to Button Label 3.

maxResponseLength integer The maximum number of bytes the user is
allowed to enter. The ResponseBuffer must be
large enough to contain all of the user’s input
plus one ASCII NULL byte.

buttonAlignment integer Selects the location of the three buttons for the
generic message pop-up. A non-zero value
aligns the buttons along the side of the dialog
box. A value of zero aligns the buttons along
the bottom of the dialog box.

activeControl integer Selects one of the three buttons or the input
string as the active control. The active control is
the control that accepts keystrokes when the
dialog box is displayed. The following attribute
names apply to activeControl.
VAL_GENERIC_POPUP_BTN1
VAL_GENERIC_POPUP_BTN2
VAL_GENERIC_POPUP_BTN3
VAL_GENERIC_POPUP_INPUT_STRING

enterButton integer Selects which button has <Enter> as its shortcut
key. If no button is to have <Enter> as its
shortcut key, pass
VAL_GENERIC_POPUP_NO_CTRL.

escapeButton integer Selects which button has <Esc> as its shortcut
key. If no button is to have <Esc> as its
shortcut key, pass
VAL_GENERIC_POPUP_NO_CTRL.

Output responseBuffer string The buffer in which the user’s response is
stored. The buffer must be large enough to hold
Max Response Length bytes plus one ASCII
NULL byte. To hide the input string, pass 0 to
Response Buffer.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-79 LabWindows/CVI User Interface Reference

Return Value

status integer Refer to Appendix A for error codes.

Return Codes

0 VAL_GENERIC_POPUP_NO_CTRL

1 VAL_GENERIC_POPUP_BTN1

2 VAL_GENERIC_POPUP_BTN2

3 VAL_GENERIC_POPUP_BTN3

Get3dBorderColors

int status = Get3dBorderColors (int baseColor, int * highlightColor ,
int * lightColor , int * shadowColor,
int * darkShadowColor);

Purpose

Takes an RGB value for the base color of an object and returns the RGB values for colors that
can be used to make the object look 3-dimensional. The colors returned are similar to the colors
used in Windows 95 for drawing 3-dimensional objects.

Parameters

Input baseColor integer The RGB value for the color of an object.

Output highlightColor integer The RGB value for the color used to indicate the
edges of the object that are in the most direct light.

lightColor integer The RGB value for the color used to indicate the
transition between the highlight color and the base
color of the object.

shadowColor integer The RGB value for the color used to indicate the
edges of the object that are angled away from the
light.

darkShadowColor integer The RGB value for the color used to indicate the
edges of the object that are angled farthest away from
the light.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-80 © National Instruments Corporation

Parameter Discussion

You may pass NULL for any of the output parameters.

Currently, the lightColor is always the same as the baseColor, as is the case in Windows 95.

Currently, the darkShadowColor is always black, as is the case in Windows 95.

GetActiveCtrl

int activeCtrl = GetActiveCtrl (int panelHandle);

Purpose

This function obtains the ID of the active control on the specified panel.

The active control is the control that receives keyboard events when its panel is the active panel.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

Return Value

activeCtrl integer Returns the control ID of the active control. The control
ID was assigned to the control in the User Interface
Editor, or returned by the NewCtrl or
DuplicateCtrl function. Refer to Appendix A for
error codes.

GetActiveGraphCursor

int status = GetActiveGraphCursor (int panelHandle, int controlID ,
int * activeCursorNumber);

Purpose

Obtains the active cursor on the specified graph control.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-81 LabWindows/CVI User Interface Reference

Parameters

Input panelHandle integer The specifier for a particular panel that is
currently in memory. This handle will have
been returned by the LoadPanel , NewPanel ,
or DuplicatePanel function.

controlID integer The defined constant (located in the .uir
header file) which was assigned to the control
by the User Interface Editor, or the ID returned
by the NewCtrl or DuplicateCtrl
function.

Output activeCursorNumber integer Returns the number of the active cursor. The
value will range from 1 to the number of defined
cursors for the specified graph. The number of
defined cursors is established when you edit the
graph in the User Interface Editor or through
SetCtrlAttribute .

Return Value

status integer Refer to Appendix A for error codes.

GetActivePanel

int activePanel = GetActivePanel (void);

Purpose

Obtains the handle of the active panel. The active panel is the panel that receives keyboard
events.

Return Value

activePanel integer Returns the handle of the active panel. this
handle will have originally been assigned by
LoadPanel , NewPanel , or Duplicate
Panel . Refer to Appendix A for error codes.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-82 © National Instruments Corporation

GetAxisItem

int status = GetAxisItem (int panelHandle, int controlID , int axis,
int itemIndex, char itemLabel[] , double * itemValue);

Purpose

This function retrieves the string/value pair at the specified index in the list of label strings for a
graph or strip chart axis.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

axis integer Specifies the axis from which to retrieve the selected
string/value pair. Valid values:
VAL_XAXIS
VAL_LEFT_YAXIS
VAL_RIGHT_YAXIS (graphs only)

itemIndex integer A zero-based index into the list of label strings.

Output itemLabel string Buffer in which the label string is returned.

itemValue double-
precision

The value associated with the label string.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

itemLabel must be large enough to hold the label string, including the terminating NUL byte.
You can use GetAxisItemLabelLength to determine the length of the label string.

You may pass NULL for either of the output parameters.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-83 LabWindows/CVI User Interface Reference

See Also

InsertAxisItem, GetNumAxisItems, GetAxisItemLabelLength

GetAxisItemLabelLength

int status = GetAxisItemLabelLength (int panelHandle, int controlID , int axis,
int itemIndex, int * length);

Purpose

This function obtains the number of characters in a label string for a graph or strip chart axis.
The label string is specified by its index in the list of string/value pairs for that axis.

The length returned does not include the terminating NUL byte.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

axis integer Specifies the axis for which to return the length of the
selected label string. Valid values:
VAL_XAXIS
VAL_LEFT_YAXIS
VAL_RIGHT_YAXIS (graphs only)

itemIndex integer A zero-based index into the list of label strings.

Output length string The length of the selected label string. Excludes the
terminating NUL byte.

Return Value

status integer Refer to Appendix A for error codes.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-84 © National Instruments Corporation

Parameter Discussion

itemLabel must be large enough to hold the label string, including the terminating NUL byte.
You can use GetAxisItemLabelLength to determine the length of the label string.

You may pass NULL for either of the output parameters.

See Also

InsertAxisItem, GetNumAxisItems, GetAxisItem.

GetAxisRange

int status = GetAxisRange (int panelHandle, int controlID , int * xAxisScalingMode,
double * xmin, double * xmax, int * yAxisScalingMode,
double * ymin, double * ymax);

Purpose

Obtains the scaling mode and the range of the X and Y axes for a graph or strip chart control.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently
in memory. This handle will have been returned
by the LoadPanel , NewPanel , or
DuplicatePanel function.

controlID integer The defined constant (located in the .uir header
file) which was assigned to the control by the User
Interface Editor, or the ID returned by the
NewCtrl or DuplicateCtrl function.

(continues)

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-85 LabWindows/CVI User Interface Reference

Parameters (Continued)

Output xAxisScalingMode integer The current scaling mode of the X axis.
0L = VAL_MANUAL
1L = VAL_AUTOSCALE

xmin double-
precision

The current minimum range of the x-axis.

xmax double-
precision

The current maximum range of the x-axis.

yAxisScalingMode integer The current scaling mode of the Y axis.
0L = VAL_MANUAL
1L = VAL_AUTOSCALE.

ymin double-
precision

The current minimum range of the Y axis.

ymax double-
precision

The current maximum range of the Y axis.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

xAxisScalingMode

VAL_MANUAL The X axis is set to manual scaling, and its range is defined by Xmin and
Xmax.

VAL_AUTOSCALEThe X axis is set to auto scaling. Xmin and Xmax are not returned. Auto
scaling is not allowed for strip charts.

yAxisScalingMode

VAL_MANUAL The Y axis is set to manual scaling, and its range is defined by Ymin and
Ymax.

VAL_AUTOSCALEThe Y axis is set to auto scaling. Ymin and Ymax are not returned. Auto
scaling is not allowed for strip charts.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-86 © National Instruments Corporation

GetAxisScalingMode

int status = GetAxisScalingMode (int panelHandle, int controlID , int axis,
int * axisScaling, double * min, double * max);

Purpose

Obtains the scaling mode and the range of any graph axis or the Y axis of a strip chart.

This function is not valid for the X axis of a strip chart. To obtain the X offset and
X increment for a strip chart, use the GetCtrlAttribute function with the
ATTR_XAXIS_OFFSET and ATTR_XAXIS_GAIN attributes.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

axis integer Specifies for which axis to obtain the mode and range.
Valid values:
VAL_XAXIS (graphs only)
VAL_LEFT_YAXIS (graphs and strip charts)
VAL_RIGHT_YAXIS (graphs only)

Output axisScaling integer The scaling mode used for the axis. See table below.

min double-
precision

The current minimum value on the axis.

max double-
precision

The current maximum value on the axis.

Return Value

status integer Refer to Appendix A for error codes.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-87 LabWindows/CVI User Interface Reference

Parameter Discussion

axisScaling is one of the following values.

Valid Value Description

VAL_MANUAL The axis is set to manual scaling, and its range is
defined by min and max.

VAL_AUTOSCALE The axis is set to auto scaling. min and max are not
used. Auto scaling is not valid for strip charts.

VAL_LOCK The axis is set to manual scaling using the current
(possibly auto scaled) minimum and maximum
values on the axis. VAL_LOCK is not valid for strip
charts.

If you call SetAxisScalingMode with axisScaling set to VAL_AUTOSCALE, and you then
call SetAxisScalingMode with axisScaling set to VAL_LOCK, GetAxisScalingMode
returns axisScaling as VAL_MANUAL.

max always exceeds min.

You may pass NULL for any of the output parameters.

See Also

SetAxisScalingMode

GetBitmapData

int status = GetBitmapData (int bitmapID , int * bytesPerRow, int * pixelDepth,
int * width , int * height, int colorTable[] ,
unsigned char bits[] , unsigned char mask[]);

Purpose

Obtains the bit values that define the image associated with a bitmap. Before calling
GetBitmapData , you must do one of the following.

• Call GetBitmapInfo to get the size of the buffers needed, and then allocate the buffers, or

• Call AllocBitmapData .

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-88 © National Instruments Corporation

Parameters

Input bitmapID integer The ID of the bitmap object containing the image.
The ID must have been obtained from
NewBitmap , GetBitmapFromFile ,
GetCtrlBitmap , ClipboardGetBitmap ,
GetCtrlDisplayBitmap , or
GetPanelDisplayBitmap .

Output bytesPerRow integer The number of bytes on each scan line of the
image.

pixelDepth integer The number of bits per pixel.

width integer The width of the image, in pixels.

height integer The height of the image, in pixels.

colorTable integer array An array of RGB color values, or NULL if
pixelDepth is greater than 8.

bits unsigned char
array

An array of bits that determine the colors to be
displayed on each pixel in the image.

mask unsigned char
array

An array containing one bit per pixel in the image.
Each bit specifies whether the pixel is actually
drawn. May be NULL.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

If there is no image, the width and height parameters are set to -1. If the bitmap originated from
a Windows metafile (.WMF), the size of the bitmap obtained by this function is the size stored in
the original Windows metafile.

The pixelDepth parameter is set to 1, 2, 8, 24, or 32.

The number of bits in the bits array for each pixel is equal to the pixelDepth value. If
pixelDepth is 8 or less, the bits array is filled with indices into the colorTable array, and the
number of entries in the colorTable array is 2 raised to the power of the pixelDepth parameter.
If pixelDepth is greater than 8, the colorTable array is not used, and the bits array contains the
actual RGB values.

For a pixelDepth of 24, each pixel is represented by a 3-byte RGB value of the form
0xRRGGBB, where RR, GG, and BB represent the red, green and blue intensity of the color. The
RR byte is always at the lowest memory address of the three bytes.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-89 LabWindows/CVI User Interface Reference

If the pixelDepth is 32, each pixel in the bits array is represented by a 32-bit RGB value of the
form 0x00RRGGBB, where RR, GG, and BB represent the red, green and blue intensity of the
color. The 32-bit value is treated as a native 32-bit integer value for the platform. The most
significant byte is always ignored. The BB byte should always be in the least significant byte.
On a little-endian platform (for example, Intel processors), BB would be at the lowest memory
address. On a big-endian platform (for example, Motorola processors), BB would be at the
highest address. Note that this differs from the format of the bits array when the pixelDepth
is 24.

The first pixel in the bits array is at the top, left corner of the image. The pixels in the array are
in row-major order.

If GetBitmapInfo sets the colorSize parameter to zero, the colorTable array is not filled in.

In the mask array, a bit value of 1 indicates that the pixel is drawn. 0 indicates that the pixel is
not drawn. Exception: If an image has a pixelDepth of 1, pixels with a bits value of 1
(foreground pixels) are always drawn and the mask affects only the pixels with a bitmap of 0
(background pixels). Each row of the mask is padded to the nearest even-byte boundary. For
example, if the width of the image is 21 pixels, then there are 32 bits (in other words, 4 bytes) of
data in each row of the mask.

A mask is useful for achieving transparency.

If GetBitmapInfo sets the maskSize parameter to zero, the mask array is not filled in.

You may pass NULL for any of the output parameters.

See Also

NewBitmap, GetBitmapFromFile, GetCtrlBitmap, GetCtrlDisplayBitmap,
GetPanelDisplayBitmap, ClipboardGetBitmap, GetBitmapInfo, AllocBitmapData.

GetBitmapFromFile

int status = GetBitmapFromFile (char fileName[] , int * bitmapID);

Purpose

Reads a bitmap image from a file and creates a bitmap object. The bitmap ID can then be passed
to any function that accepts a bitmap, such as CanvasDrawBitmap or
ClipboardPutBitmap .

You can discard the bitmap object by passing its ID to DiscardBitmap .

You can use the following image types:

PCX: Windows and SPARCstation

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-90 © National Instruments Corporation

BMP, DIB, RLE, ICO: Windows only
WMF: Windows 95 and NT only
XWD: SPARCstation only

Parameters

Input fileName string The pathname of the file which contains the image. If the
name is a simple filename, the file is loaded from the
project. If it is not found in the project, the file is loaded
from the directory containing the project.

Output bitmapID integer An ID that serves as a handle to the bitmap object.

Return Value

status integer Refer to Appendix A for error codes.

See Also

ClipboardPutBitmap, GetBitmapData, SetCtrlBitmap, PlotBitmap,
CanvasDrawBitmap, DiscardBitmap.

GetBitmapInfo

int status = GetBitmapInfo (int bitmapID , int * colorSize, int * bitsSize,
int * maskSize);

Purpose

Obtains size information about the image associated with a bitmap. This information can then be
used in allocating the buffers to be passed to the GetBitmapData function.

As an alternative to this function, you can call AllocBitmapData , which allocates the buffers
for you.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-91 LabWindows/CVI User Interface Reference

Parameters

Input bitmapID integer The ID of the bitmap object containing the image. The ID
must have been obtained from NewBitmap ,
GetBitmapFromFile , GetCtrlBitmap ,
ClipboardGetBitmap , GetCtrlDisplayBitmap ,
or GetPanelDisplayBitmap .

Output colorSize integer The number of bytes in the image color table (0 if the pixel
depth of the image is greater than 8).

bitsSize integer The number of bytes in the image bitmap.

maskSize integer The number of bytes in the image mask (0 if there is no
mask).

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

You may pass NULL for any of the output parameters.

See Also

GetBitmapData, AllocBitmapData.

GetCtrlAttribute

int status = GetCtrlAttribute (int panelHandle, int controlID , int controlAttribute ,
void * attributeValue);

Purpose

Obtains the value of a control attribute from the selected panel and control.

Since attributes may Return Values of different data types with different valid ranges, a list of
attributes, their data types and valid values are provided in Table 3-9 in Chapter 3, Programming
with the User Interface Library.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-92 © National Instruments Corporation

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

controlAttribute integer Selects a control attribute. Many control attributes are
specific to one kind of control, while others are used
with all or many different controls. See Table 3-9 in
Chapter 3 for a complete listing of control attributes.

Output attributeValue void * Returns the value of the specified control attribute. See
Table 3-9 in Chapter 3 for a complete listing of control
attributes.

Return Value

status integer Refer to Appendix A for error codes.

GetCtrlBitmap

int status = GetCtrlBitmap (int panelHandle, int controlID , int imageID,
int * bitmapID);

Purpose

Obtains a bitmap image from a control and stores it in a bitmap object. The bitmap ID can then
be passed to any function that accepts a bitmap, such as CanvasDrawBitmap or
ClipboardPutBitmap .

The following control types can contain images:

picture controls
picture rings
picture buttons
graph controls
canvas controls

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-93 LabWindows/CVI User Interface Reference

You can use this function on images set using DisplayImageFile , InsertListItem ,
ReplaceListItem , PlotBitmap , or SetImageBits , or SetCtrlAttribute with the
ATTR_IMAGE_FILE attribute.

You can discard the bitmap object by passing its ID to DiscardBitmap .

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

imageID integer For picture rings, the zero-based index of an image in the
ring. For graphs, this argument is the plotHandle returned
from PlotBitmap . For picture controls, picture buttons,
and canvas controls, this argument is ignored.

Output bitmapID integer An ID that serves as a handle to the bitmap object.

Return Value

status integer Refer to Appendix A for error codes.

See Also

ClipboardPutBitmap, GetBitmapData, SetCtrlBitmap, PlotBitmap,
CanvasDrawBitmap, DiscardBitmap.

GetCtrlBoundingRect

int status = GetCtrlBoundingRect (int panelHandle, int controlID , int * top,
int * left, int * height, int * width) ;

Purpose

This function returns the top, left, width, and height coordinates for the control’s bounding
rectangle.

The control’s labels are included within the bounding rectangle.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-94 © National Instruments Corporation

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

Output top integer Returns the top coordinate of the control’s bounding
rectangle.

left integer Returns the left coordinate of the control’s bounding
rectangle.

height integer Returns the vertical size of the control’s bounding
rectangle.

width integer Returns the horizontal size of the control’s bounding
rectangle.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

You can pass 0 (zero) to any parameter from which you are not interested in getting the value.
The range of the top and left Parameters is -32768 to 32767. The range of the height and width
Parameters is 1 to 32767. The origin (0,0) is at the upper left corner of the panel (before the
panel is scrolled) directly below the title bar.

GetCtrlDisplayBitmap

int status = GetCtrlDisplayBitmap (int panelHandle, int controlID ,
int includeLabel, int * bitmapID);

Purpose

This function creates a bitmap object containing a "snapshot" image of the current appearance of
the specified control. The bitmap ID can then be passed to any function that accepts a bitmap,
such as CanvasDrawBitmap or ClipboardPutBitmap .

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-95 LabWindows/CVI User Interface Reference

For example, you can paste a picture of a control onto the system clipboard by calling
GetCtrlDisplayBitmap and then passing the bitmap ID to ClipboardPutBitmap .

You can discard the bitmap object by passing the ID to the DiscardBitmap function.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

includeLabel integer If nonzero, the control label is included in the image.

Output bitmapID integer An ID that serves as a handle to the bitmap object.

Return Value

status integer Refer to Appendix A for error codes.

See Also

ClipboardPutBitmap, GetBitmapData, GetPanelDisplayBitmap, SetCtrlBitmap,
PlotBitmap, CanvasDrawBitmap, DiscardBitmap.

GetCtrlIndex

int status = GetCtrlIndex (int panelHandle, int controlID , int * itemIndex);

Purpose

This function returns the current index of the specified list control.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-96 © National Instruments Corporation

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

Output itemIndex integer Returns the current index of the specified list control.
Returns -1 if the list control has no items.

Return Value

status integer Refer to Appendix A for error codes.

GetCtrlVal

int status = GetCtrlVal (int panelHandle, int controlID , void * value);

Purpose

Obtains the current value of a control.

When called on a list control (a list box or ring), GetCtrlVal returns the value of the current
(selected) list item. To obtain the index of the selected list item, use the GetCtrlIndex
function.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

Output value void * Returns the control’s value. The data type of value
must match the data type of the control.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-97 LabWindows/CVI User Interface Reference

Return Value

status integer Refer to Appendix A for error codes.

GetCursorAttribute

int status = GetCursorAttribute (int panelHandle, int controlID , int cursorNumber,
int cursorAttribute , int * attributeValue);

Purpose

Obtains one of the following graph cursor attributes: mode, point style, cross hair style, color,
y-axis.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

cursorNumber integer The cursor number may range from 1 to the number of
defined cursors for the specified graph. The number of
defined cursors is established when you edit the graph in
the User Interface Editor or through
SetCtrlAttribute .

cursorAttribute integer Selects a particular graph cursor attribute.
Valid Attributes:
ATTR_CURSOR_MODE
ATTR_CURSOR_POINT_STYLE
ATTR_CROSS_HAIR_STYLE
ATTR_CURSOR_COLOR
ATTR_CURSOR_YAXIS

Output attributeValue integer See Table 3-20 in Chapter 3 for a complete listing of
cursor attributes.

Return Value

status integer Refer to Appendix A for error codes.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-98 © National Instruments Corporation

GetCVITaskHandle

int taskHandle = GetCVITaskHandle (void);

Note: This function is available only on the Windows 3.1 version of LabWindows/CVI.

Purpose

This function returns the Windows 3.1 task handle associated with the LabWindows/CVI
application. This number can be used by a DLL requiring LabWindows/CVI’s Windows task
handle.

For Windows 95 and NT, use the Windows API function GetCurrentProcessID .

Return Value

taskHandle integer The Windows task handle associated with the
LabWindows/CVI application.

GetCVIWindowHandle

int windowHandle = GetCVIWindowHandle (void);

Note: This function is available only on the Windows version of LabWindows/CVI.

Purpose

This function returns the window handle associated with the LabWindows/CVI application. This
number should be used in the DLL as the hwnd parameter for the Windows function,
PostMessage , as indicated in the Windows SDK documentation.

To make this work, you call RegisterWinMsgCallback and GetCVIWindowHandle
and then pass their Return Values (uMsg and hwnd) to the DLL. When the DLL wants to send a
message , it calls PostMessage with these values. When LabWindows/CVI receives the
message, it calls the callback function.

Note: LabWindows/CVI can receive the message only when it is processing events.
LabWindows/CVI processes events when it is waiting for user input. If the program
running in LabWindows/CVI does not call RunUserInterface , GetUserEvent ,
or scanf , or if it does not return from a User Interface Library callback, events will
not be processed. This can be remedied in the program by calling the User Interface
Library function ProcessSystemEvents periodically.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-99 LabWindows/CVI User Interface Reference

Return Value

windowHandle integer The Windows handle associated with the
LabWindows/CVI application.

GetGlobalMouseState

int status = GetGlobalMouseState (int * panelHandle, int * xCoordinate,
int * yCoordinate, int * leftButtonDown,
int * rightButtonDown , int * keyModifiers);

Purpose

Obtains information about the state of the mouse cursor. xCoordinate and yCoordinate are set
to the position of the mouse relative to the top, left corner of the screen.

Parameters

Output panelHandle integer The handle of the panel that the mouse is over. 0 if the
mouse is not over a panel.

xCoordinate integer The x-coordinate of the mouse cursor relative to the
left edge of the screen.

yCoordinate integer The y-coordinate of the mouse cursor relative to the top
of the screen.

leftButtonDown integer 0 if the left button is up. 1 if the left button is down.

rightButtonDown integer 0 if the right button is up. 1 if the right button is down.

keyModifiers integer The state of the keyboard modifiers the (in other
words, the <Ctrl> and <Shift> keys). If no keys are
down, the value is 0. Otherwise, the value is the bitwise
'OR' of the appropriate key masks:
VAL_MENUKEY_MODIFIER and
VAL_SHIFT_MODIFIER.

Return Value

status integer Refer to Appendix A for error codes.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-100 © National Instruments Corporation

Parameter Discussion

You may pass NULL (0) in place of any of the output parameters.

See Also

GetRelativeMouseState.

GetGraphCursor

int status = GetGraphCursor (int panelHandle, int controlID , int cursorNumber,
double * x, double * y);

Purpose

Obtains the current position of the specified graph cursor.

The position is relative to the current range of the X and Y axes.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header
file) which was assigned to the control by the User
Interface Editor, or the ID returned by the NewCtrl
or DuplicateCtrl function.

cursorNumber integer The cursor number may range from 1 to the number
of defined cursors for the specified graph. The
number of defined cursors is established when you
edit the graph in the User Interface Editor or through
SetCtrlAttribute .

Output x double-
precision

Returns the X coordinate of the cursor position.

y double-
precision

Returns the Y coordinate of the cursor position.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-101 LabWindows/CVI User Interface Reference

Return Value

status integer Refer to Appendix A for error codes.

GetGraphCursorIndex

int status = GetGraphCursorIndex (int panelHandle, int controlID , int cursorNumber,
int * plotHandle, int * arrayIndex);

Purpose

Obtains the plot handle and array index of the plot on which the cursor is attached.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

cursorNumber integer
The cursor number may range from 1 to the number of
defined cursors for the specified graph. The number of
defined cursors is established when you edit the graph
in the User Interface Editor or through
SetCtrlAttribute.

Output plotHandle integer Contains the ID of the plot to which the cursor is
attached. If the cursor is not attached to a plot, -1 is
returned.

arrayIndex integer Contains the array index of the data point to which the
cursor is attached. If the cursor is attached to a point
plot, or if the cursor is not attached to a data point, -1 is
returned.

Return Value

status integer Refer to Appendix A for error codes.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-102 © National Instruments Corporation

GetImageBits

int status = GetImageBits (int panelHandle, int controlID , int imageID,
int * rowBytes, int * depth, int * width , int * height,
int colorTable[], unsigned char bitmap[] ,
unsigned char mask[]);

Purpose

Obtains the bit values that define an image. You can modify the bit values and then apply them
back to the image using SetImageBits .

Before calling GetImageBits ,

• Call GetImageInfo to get the size of the buffers needed, and then allocate the buffers, or

• Call AllocImageBits .

The following control types can contain images.

picture controls
picture rings
picture buttons
graph controls

This function can be used in images set via DisplayImageFile , InsertListItem ,
ReplaceListItem , PlotBitmap , or SetImageBits , or SetCtrlAttribute with the
ATTR_IMAGE_FILE attribute.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the user Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

imageID integer For a picture ring, the zero-based index of an image in
the ring. For a graph, the plotHandle returned from
PlotBitmap. For picture controls and buttons, this is
ignored.

(continues)

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-103 LabWindows/CVI User Interface Reference

(Continued)

Output rowBytes integer The number of bytes on each scan line of the image.

depth integer The number of bits per pixel.

width integer The width of the image, in pixels.

height integer The height of the image, in pixels.

colorTable integer
array

An array of RGB color values.

bitmap unsigned
char array

An array of bits that determine the colors to be
displayed on each pixel in the image.

mask unsigned
char array

An array containing one bit per pixel in the image.
Each bit specifies whether the pixel is actually drawn.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

If there is no image, the width and height parameters are set to -1. If the image was originally
rendered from a Windows metafile (.WMF), the size of the bitmap obtained by this function is
determined as follows.

• If the image was on a graph control or if the fit mode is VAL_SIZE_TO_PICTURE, the size
of the bitmap is the size of the image as it appears in the control.

• If the image is on a picture, picture ring, or picture button, and the fit mode is other than
VAL_SIZE_TO_PICTURE, the size of the bitmap is the size stored in the original
Windows metafile.

The number of entries in the colorTable array must be equal to 2 raised to the power of the
depth parameter.

The pixelDepth parameter is set to 1, 2, 8, 24, or 32.

The number of bits in the bits array for each pixel is equal to the pixelDepth value. If
pixelDepth is 8 or less, the bits array is filled with indices into the colorTable array, and the
number of entries in the colorTable array is 2 raised to the power of the pixelDepth parameter.
If pixelDepth is greater than 8, the colorTable array is not used, and the bits array contains the
actual RGB values.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-104 © National Instruments Corporation

For a pixelDepth of 24, each pixel is represented by a 3-byte RGB value of the form
0xRRGGBB, where RR, GG, and BB represent the red, green and blue intensity of the color. The
RR byte is always at the lowest memory address of the three bytes.

If the pixelDepth is 32, each pixel in the bits array is represented by a 32-bit RGB value of the
form 0x00RRGGBB, where RR, GG, and BB represent the red, green and blue intensity of the
color. The 32-bit value is treated as a native 32-bit integer value for the platform. The most
significant byte is always ignored. The BB byte should always be in the least significant byte.
On a little-endian platform (for example, Intel processors), BB would be at the lowest memory
address. On a big-endian platform (for example, Motorola processors), BB would be at the
highest address. Note that this differs from the format of the bits array when the pixelDepth is
24..

The first pixel in the bits array is at the top, left corner of the image. The pixels in the array are
in row-major order.

If GetBitmapInfo sets the colorSize parameter to zero, the colorTable array is not filled in.

In the mask array, a bit value of 1 indicates that the pixel is drawn. 0 indicates that the pixel is
not drawn. Exception: If an image has a pixelDepth of 1, pixels with a bits value of 1
(foreground pixels) are always drawn and the mask affects only the pixels with a bitmap of 0
(background pixels). Each row of the mask is padded to the nearest even-byte boundary. For
example, if the width of the image is 21 pixels, then there are 32 bits (in other words, 4 bytes) of
data in each row of the mask.

A mask is useful for achieving transparency.

If GetImageInfo sets the maskSize parameter to zero, the mask array will not be filled in.

You may pass NULL for any of the output parameters.

You can now use a 24-bit pixel depth in the four picture control image bits functions. When you
do, the color table parameters to the functions are not used. The array of bits contains RGB
values rather than indexes into the color table. Each RGB value in the array of bits represented
by a 3-byte value of the form

0xRRGGBB

where RR, GG, and BB represent the red, green and blue intensity of the color. The RR byte
should always be at the lowest memory address of the three bytes.

See Also

GetImageInfo, AllocImageBits, SetImageBits.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-105 LabWindows/CVI User Interface Reference

GetImageInfo

int status = GetImageInfo (int panelHandle, int controlID , int imageID,
int * colorSize, int * bitmapSize, int * maskSize);

Purpose

Obtains size information about an image associated with a control on a panel. This information
can then be used in allocating the buffers to be passed to the GetImageBits function.

The following control types can contain images.

picture controls
picture rings
picture buttons
graph controls

As an alternative to this function, you can call AllocImageBits , which allocates the buffers
for you.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel function.

controlID integer The defined constant (located in the .uir header file) which
was assigned to the control by the user Interface Editor, or
the ID returned by the NewCtrl or DuplicateCtrl
function.

imageID integer For a picture ring, the zero-based index of an image in the
ring. For a graph, the plotHandle returned from
PlotBitmap . For picture controls and buttons, this is
ignored.

Output colorSize integer The number of bytes in the image color table (-1 if there is
no image).

bitmapSize integer The number of bytes in the image bitmap (-1 if there is no
image).

maskSize integer The of bytes in the image mask (0 if the image has no mask.
-1 if there is no image.)

Return Value

status integer Refer to Appendix A for error codes.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-106 © National Instruments Corporation

Parameter Discussion

You may pass NULL for any of the output parameters.

You can now use a 24-bit pixel depth in the four picture control image bits functions. When you
do, the color table parameters to the functions are not used. The array of bits contains RGB
values rather than indexes into the color table. Each RGB value in the array of bits represented
by a 3-byte value of the form

0xRRGGBB

where RR, GG, and BB represent the red, green and blue intensity of the color. The RR byte
should always be at the lowest memory address of the three bytes.

See Also

GetImageBits.

GetIndexFromValue

int status = GetIndexFromValue (int panelHandle, int controlID , int * index, ...);

Purpose

This function returns the index of the first list item with the specified value.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently
in memory. This handle will have been returned by
the LoadPanel , NewPanel , or
DuplicatePanel function.

controlID integer The defined constant (located in the .uir header
file) which was assigned to the control by the User
Interface Editor, or the ID returned by the
NewCtrl or DuplicateCtrl function.

itemValue depends on
the type of
the control

Specifies the value whose index will be returned.

Output index integer Returns the index of the first list item with the
specified value.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-107 LabWindows/CVI User Interface Reference

Return Value

status integer Refer to Appendix A for error codes.

GetLabelFromIndex

int status = GetLabelFromIndex (int panelHandle, int controlID , int itemIndex,
char itemLabel[]);

Purpose

This function returns the label of the specified list item.

For picture ring controls, this function returns an empty string.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

itemIndex integer The zero-based index into the list.

Output itemLabel string Returns the label of the selected list item.

Return Value

status integer Refer to Appendix A for error codes.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-108 © National Instruments Corporation

GetLabelLengthFromIndex

int status = GetLabelLengthFromIndex (int panelHandle, int controlID ,
int itemIndex, int * length);

Purpose

This function returns the label length of the specified list item.

For picture ring controls, this function returns zero.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

itemIndex integer The zero-based index into the list.

Output length integer Returns the number of characters in the label of the
selected list item.

Return Value

status integer Refer to Appendix A for error codes.

GetListItemImage

int status = GetListItemImage (int panelHandle, int controlID , int itemIndex,
int * image);

Purpose

This function returns a value corresponding to the image state of the specified list item.

The image state of a list item indicates the presence of various folder icons next to the item.

This function is not valid for picture ring controls. For picture rings, see GetImageBits .

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-109 LabWindows/CVI User Interface Reference

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

itemIndex integer The zero-based index into the list.

Output image integer Returns the value corresponding to the image state of
the specified list item. The possible image states are:
0 = VAL_NO_IMAGE
1 = VAL_FOLDER
2 = VAL_OPEN_FOLDER
3 = VAL_CURRENT_FOLDER

Return Value

status integer Refer to Appendix A for error codes.

GetMenuBarAttribute

int status = GetMenuBarAttribute (int menuBarHandle, int menuorMenuItemID ,
int menuBarAttribute , void * attributeValue);

Purpose

This function returns the value of the specified menu bar attribute.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-110 © National Instruments Corporation

Parameters

Input menuBarHandle integer The ID which was assigned to the menu or
menu item by the User Interface Editor (located
in the .uir header file), or returned by
NewMenu, NewSubMenu, or NewMenuItem.

menuorMenuItemID integer The ID which was assigned to the menu or
menu item by the User Interface Editor (located
in the .uir header file), or returned by
NewMenu, NewSubMenu, or NewMenuItem .
If the attribute corresponds to the entire menu
bar, pass 0 (zero) as this parameter.

menuBarAttribute integer A particular menu bar attribute. See Table 3-6
in Chapter 3 for a complete listing of menu bar
attributes.

Output attributeValue void * The value of the selected menu bar attribute. See
Table 3-6 in Chapter 3 for valid values
associated with all menu bar attributes.

Return Value

status integer Refer to Appendix A for error codes.

GetMouseCursor

int status = GetMouseCursor (int * mouseCursorStyle);

Purpose

Returns the mouse cursor style set by SetMouseCursor .

Parameters

Output mouseCursorStyle integer Returns the mouse cursor style set by
SetMouseCursor . The possible mouse
cursor styles are shown in Table 3-4 of
Chapter 3.

Return Value

status integer Refer to Appendix A for error codes.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-111 LabWindows/CVI User Interface Reference

GetNumAxisItems

int status = GetNumAxisItems (int panelHandle, int controlID , int axis,
int * count);

Purpose

Returns the number of items in the list of label strings for a graph or strip chart axis.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

axis integer Specifies the axis for which to return the count of
string/value pairs. Valid values:
VAL_XAXIS
VAL_LEFT_YAXIS
VAL_RIGHT_YAXIS (graphs only)

Output count integer The number of string/value pairs for the axis.

Return Value

status integer Refer to Appendix A for error codes.

See Also

InsertAxisItem, GetAxisItem, GetAxisItemLabelLength

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-112 © National Instruments Corporation

GetNumCheckedItems

int status = GetNumCheckedItems (int panelHandle, int controlID ,
int * numberofItems);

Purpose

This function returns the number of checked list items from a specified list control.

This function only applies to list boxes with the check mode attribute set.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

Output numberofItems integer Returns the number of list items that are checked.

Return Value

status integer Refer to Appendix A for error codes.

GetNumListItems

int status = GetNumListItems (int panelHandle, int controlID , int * count);

Purpose

This function returns the number of list items in the specified list control.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-113 LabWindows/CVI User Interface Reference

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

Output count integer Returns the number of items in the specified list
control. Because the indices are zero-based, this value
will be 1 greater than the index of the last item.

Return Value

status integer Refer to Appendix A for error codes.

GetNumTextBoxLines

int status = GetNumTextBoxLines (int panelHandle, int controlID , int * count);

Purpose

This function returns the number of lines containing text in the specified text box.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

Output count integer Returns the number of lines containing text in the
specified text box.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-114 © National Instruments Corporation

Return Value

status integer Refer to Appendix A for error codes.

GetPanelAttribute

int status = GetPanelAttribute (int panelHandle, int panelAttribute ,
void * attributeValue);

Purpose

This function returns the value of a particular panel attribute.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

panelAttribute integer See Table 3-2 in Chapter 3 for a complete listing of
panel attributes.

Output attributeValue void * The value of the specified panel attribute. See Table 3-2
in Chapter 3 for valid values associated with all panel
attributes.

Return Value

status integer Refer to Appendix A for error codes.

GetPanelDisplayBitmap

int status = GetPanelDisplayBitmap (int panelHandle, int scope, Rect area,
int * bitmapID);

Purpose

This function creates a bitmap object containing a "snapshot" image of the current appearance of
the specified panel. The bitmap ID can then be passed any function that accepts a bitmap, such
as CanvasDrawBitmap or ClipboardPutBitmap .

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-115 LabWindows/CVI User Interface Reference

For example, you can paste a picture of a panel onto the system clipboard by calling
GetPanelDisplayBitmap and then passing the bitmap ID to ClipboardPutBitmap .

You can discard the bitmap object by passing the ID to the DiscardBitmap function.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

scope integer Determines which portions of the specified panel are to be
copied to the bitmap. See table of valid values below.

area Rect Use this parameter to restrict the area of the panel copied
into the bitmap. The rectangle coordinates are relative to
the upper-left corner of the panel (directly below the title
bar) before the panel is scrolled. Use
VAL_ENTIRE_OBJECT if you do not want to restrict the
area copied.

Output bitmapID integer An ID that serves as a handle to the bitmap object.

Return Value

status integer Refer to Appendix A for error codes.

The valid values for the scope parameter are:

Valid Values Description

VAL_VISIBLE_AREA The visible area of the panel is copied to the
bitmap, including the frame, menu bar, and scroll
bars.

VAL_FULL_PANEL The entire contents of the panel are copied to the
bitmap, excluding the frame, menu bar, and scroll
bars. This includes contents that might currently be
scrolled off the visible area.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-116 © National Instruments Corporation

See Also

ClipboardPutBitmap, GetBitmapData, GetCtrlDisplayBitmap, SetCtrlBitmap,
PlotBitmap, CanvasDrawBitmap, DiscardBitmap.

GetPanelMenuBar

int menuBarHandle = GetPanelMenuBar (int panelHandle);

Purpose

This function returns the handle of the menu bar associated with the specified panel.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

Return Value

menuBarHandle integer The menu bar associated with the specified panel. The
menu bar handle would have been returned by
LoadMenuBar or NewMenuBar. If no menu bar is
associated with the panel, zero is returned. Refer to
Appendix A for error codes.

GetPlotAttribute

int status = GetPlotAttribute (int panelHandle, int controlID , int plotHandle,
int plotAttribute , void * attributeValue);

Purpose

Obtains the value of a graph plot attribute.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-117 LabWindows/CVI User Interface Reference

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the user Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

plotHandle integer The handle for a particular plot in the graph. It will
have been returned by one of the graph plotting
functions.

plotAttribute integer Selects a particular graph plot attribute. See Table 3-20
in Chapter 3 for a complete listing of plot attributes.

Output attributeValue void * Returns the value of the specified plot attribute. See
Table 3-20 in Chapter 3 for a complete listing of plot
attributes.

Return Value

status integer Refer to Appendix A for error codes.

GetPrintAttribute

int status = GetPrintAttribute (int printAttribute , int * attributeValue);

Purpose

Returns the value of the selected print attribute.

Parameters

Input printAttribute integer See Table 3-27 in Chapter 3 for a complete listing of
print attributes.

Output attributeValue integer The current value of the print attribute. See Table 3-27
in Chapter 3 for valid values associated with all print
attributes.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-118 © National Instruments Corporation

Return Value

status integer Refer to Appendix A for error codes.

GetRelativeMouseState

int status = GetRelativeMouseState (int panelHandle, int controlID ,
int * xCoordinate, int * yCoordinate,
int * leftButtonDown, int * rightButtonDown ,
int * keyModifiers);

Purpose

Obtains information about the state of the mouse cursor. xCoordinate and yCoordinate are set to
the position of the mouse relative to the top and left coordinates of the control specified. If
controlID is 0, the coordinate information is relative to the top and left coordinates of the panel
specified (excluding the panel frame and title bar). Note that the coordinates are returned even if
the mouse is not over the control or the panel.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the user Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function. Pass 0 to indicate that the
coordinates should be relative to the panel.

Output xCoordinate integer The x-coordinate of the mouse cursor relative to the
left edge of the control (or panel, if control ID is 0).

yCoordinate integer The y-coordinate of the mouse cursor relative to the top
of the control (or panel, if controlID is 0).

leftButtonDown integer 0 if the left button is up. 1 if the left button is down.

rightButtonDown integer 0 if the right button is up. 1 if the right button is down.

keyModifiers integer The state of the keyboard modifiers the (in other
words, the <Ctrl> and <Shift> keys). If no keys are
down, the value is 0. Otherwise, the value is the bitwise
'OR' of the appropriate key masks:
VAL_MENUKEY_MODIFIER and
VAL_SHIFT_MODIFIER.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-119 LabWindows/CVI User Interface Reference

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

You may pass NULL (0) in place of any of the output parameters.

See Also

GetGlobalMouseState.

GetScreenSize

int status = GetScreenSize (int * height, int * width);

Purpose

Returns the height and width of the screen in pixels.

Parameters

Output height integer Height of the screen in pixels.

width integer Width of the screen in pixels.

Return Value

status integer Refer to Appendix A for error codes.

GetSharedMenuBarEventPanel

int panelHandle = GetSharedMenuBarEventPanel (void);

Purpose

This function returns the handle for the panel on which the last menu commit event occurred.

This function is especially useful when one menu bar is shared by multiple panels.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-120 © National Instruments Corporation

Return Value

panelHandle integer Returns the handle for the panel on which the last
commit event occurred. Refer to Appendix A for error
codes.

GetSleepPolicy

int sleepPolicy = GetSleepPolicy (void);

Purpose

Obtains the current "sleep" policy. See SetSleepPolicy for more information on "sleeping".

Return Value

sleepPolicy integer The current sleep policy.

Return Codes

VAL_SLEEP_NONE 1 Never be put to sleep.

VAL_SLEEP_SOME 2 Be put to sleep a small period.

VAL_SLEEP_MORE 3 Be put to sleep for a longer period.

See Also

SetSleepPolicy.

GetSystemAttribute

int status = GetSystemAttribute (int systemAttribute, void * attributeValue);

Purpose

Returns the value of a particular system attribute.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-121 LabWindows/CVI User Interface Reference

Parameters

Input systemAttribute integer ATTR_ALLOW_UNSAFE_TIMER_EVENTS
ATTR_REPORT_LOAD_FAILURE
ATTR_ALLOW_MISSING_CALLBACKS

Output attributeValue void * The value of the specified attribute. See Table 3-26
for values associated with this attribute.

Return Value

status integer Refer to Appendix A for error codes.

GetSystemPopupsAttribute

int status = GetSystemPopupsAttribute (int popupAttribute , void * attributeValue);

Purpose

Returns the value of a particular system pop-up attribute.

Parameters

Input popupAttribute integer ATTR_MOVABLE or
ATTR_SYSTEM_MENU_VISIBLE

Output attributeValue void* The value of the specified attribute. See Table 3-
2 in Chapter 3 for valid values associated with
these attributes.

Return Value

status integer Refer to Appendix A for error codes.

GetTextBoxLine

int status = GetTextBoxLine (int panelHandle, int controlID , int lineIndex,
char destinationBuffer[]);

Purpose

This function returns a string from the specified text box line into Destination Buffer.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-122 © National Instruments Corporation

Parameters

Input panelHandle integer The specifier for a particular panel that is
currently in memory. This handle will have
been returned by the LoadPanel , NewPanel ,
or DuplicatePanel function.

controlID integer The defined constant (located in the .uir
header file) which was assigned to the control
by the User Interface Editor, or the ID returned
by the NewCtrl or DuplicateCtrl
function.

lineIndex integer The zero-based index into the text box.

Output destinationBuffer string Returns the string at the specified text box line.

Return Value

status integer Refer to Appendix A for error codes.

GetTextBoxLineLength

int status = GetTextBoxLineLength (int panelHandle, int controlID , int lineIndex,
int * length);

Purpose

This function returns the number of characters in the selected text box line (including null
characters.)

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

lineIndex integer The zero-based index into the text box.

Output length integer Returns number of characters in the selected text box line.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-123 LabWindows/CVI User Interface Reference

Return Value

status integer Refer to Appendix A for error codes.

GetTextDisplaySize

int status = GetTextDisplaySize (char text[] , char metaFont[] , int * height,
int * width);

Purpose

Returns the height and width of the specified text having the specified meta font.

Parameters

Input text string The text string whose size is to be calculated.

metaFont string The meta font to be used in calculating the size of the
text.

Output height integer The height of the text in pixels.

width integer The width of the text in pixels.

Return Value

status integer Refer to Appendix A for error codes.

GetTraceAttribute

int status = GetTraceAttribute (int panelHandle, int controlID , int traceNumber,
int traceAttribute , int * attributeValue);

Purpose

Obtains one of the following strip chart trace attributes: color, trace style, point style, line style,
visible.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-124 © National Instruments Corporation

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

traceNumber integer The strip chart trace number may be from 1 to the
number of defined strip chart traces. The number of
defined strip chart traces is established through editing
the strip chart in the User Interface Editor or calling
SetCtrlAttribute

traceAttribute integer Selects a particular strip chart trace attribute. See
Table 3-20 in Chapter 3 for a complete listing of trace
attributes.

Output attributeValue integer The current value of the trace attribute.

Return Value

status integer Refer to Appendix A for error codes.

GetUILErrorString

char * message = GetUILErrorString (int errorNum)

Purpose

Converts the error number returned by a User Interface Library function into a meaningful error
message.

Parameters

Input errorNum integer Status returned by User Interface function.

Return Value

message string Explanation of error.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-125 LabWindows/CVI User Interface Reference

GetUserEvent

int status = GetUserEvent (int waitMode, int * panelorMenuBarHandle,
int * controlorMenuItemID);

Purpose

Obtains the next commit event or programmer-defined event from the GetUserEvent queue.
A commit event occurs when the user changes the state of a hot or validate control or selects a
menu item. Programmer-defined events are placed in the GetUserEvent queue by
QueueUserEvent . The function description for QueueUserEvent describes valid
programmer-defined events.

Parameters

Input waitMode integer If 1, GetUserEvent does not return until a
commit event occurs. If 0, GetUserEvent
returns immediately, whether or not a commit
event has occurred.

Output panelorMenuBarHandle integer Returns the handle of the panel or menu bar on
which the commit event occurred. If waitMode
is zero (“no wait”) and no event has occurred,
a -1 is returned.

controlorMenuItemID integer Returns the ID of the control or menu item on
which the commit event occurred. If waitMode
is zero (“no wait”) and no event has occurred,
a -1 is returned.

Return Value

status integer Refer to Appendix A for error codes.

Return Codes

Contains the event retrieved from the GetUserEvent queue. The possible values are:

0 No event.

1 Commit event occurred.

1000-10000 Event queued by QueueUserEvent.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-126 © National Instruments Corporation

GetValueFromIndex

int status = GetValueFromIndex (int panelHandle, int controlID , int itemIndex,
void * itemValue);

Purpose

This function returns the value for the specified list index.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

itemIndex integer The zero-based index into the list.

Output itemValue void * Returns the value of the specified list item.

Return Value

status integer Refer to Appendix A for error codes.

GetValueLengthFromIndex

int status = GetValueLengthFromIndex (int panelHandle, int controlID ,
int itemIndex, int * length);

Purpose

This function returns the length of the value for the specified list item.

This function is valid only for lists with string data type.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-127 LabWindows/CVI User Interface Reference

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

itemIndex integer The zero-based index into the list.

Output length integer Returns the length of the value at the Item Index.

Return Value

status integer Refer to Appendix A for error codes.

GetWaitCursorState

int cursorState = GetWaitCursorState (void);

Purpose

Returns the state of the cursor, indicating whether the wait cursor is active or inactive.

Return Value

status integer Refer to Appendix A for error codes.

Return Codes

Returns the state of the wait cursor.

0 wait cursor inactive.
1 wait cursor active.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-128 © National Instruments Corporation

HidePanel

int status = HidePanel (int panelHandle);

Purpose

Clears a panel from the screen but leaves it in memory.

When a panel is hidden, it can still be updated programmatically. For example, you can add plots
to a graph control on a hidden panel. When the panel displays again, it will show the new plots.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently
in memory. This handle will have been returned
by the LoadPanel , NewPanel , or
DuplicatePanel function.

Return Value

status integer Refer to Appendix A for error codes.

InsertAxisItem

int status = InsertAxisItem (int panelHandle, int controlID , int axis,
int itemIndex, char itemLabel[],double itemValue);

Purpose

This function inserts a string/value pair into the list of label strings associated with a graph or
strip chart axis. These strings appear instead of the numerical labels. They appear at the location
of their associated values on the graph or strip chart.

To see string labels on an X axis, you must set the ATTR_XUSE_LABEL_STRINGS attribute to
TRUE. To see string labels on a Y axis, you must set the ATTR_YUSE_LABEL_STRINGS
attribute to TRUE.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-129 LabWindows/CVI User Interface Reference

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

axis integer Specifies the axis for which to insert the string/value
pair. Valid values:
VAL_XAXIS
VAL_LEFT_YAXIS
VAL_RIGHT_YAXIS (graphs only)

itemIndex integer The zero-based index into the list at which the item is to
be stored. Pass -1 to store the item at the end of the list.
See discussion below.

itemLabel string The label string being inserted. The label appears on the
axis at the location of the associated value. A maximum
of 31 characters are shown.

itemValue double-
precision

The value to be associated with the label string being
inserted. The label string appears on the axis at the
location of the value.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

itemIndex does not determine the order in which the labels appear on the axis. It merely
represents the order in which LabWindows/CVI stores the string/value pairs. You can use the
index as a handle for replacing or deleting label/value pairs.

If you pass -1 for itemIndex, the string/value pair is stored at the end of the list.

See Also

ReplaceAxisItem, DeleteAxisItem, ClearAxisItems, GetNumAxisItems

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-130 © National Instruments Corporation

InsertListItem

int status = InsertListItem (int panelHandle, int controlID , int itemIndex,
char itemLabel[] , ...);

Purpose

This function inserts a label/value pair into a list or ring control at the specified zero-based
index.

The indices of existing label/value pairs at and beyond the specified index are increased by 1.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently
in memory. This handle will have been returned by
the LoadPanel , NewPanel , or
DuplicatePanel function.

controlID integer The defined constant (located in the .uir header
file) which was assigned to the control by the User
Interface Editor, or the ID returned by the
NewCtrl or DuplicateCtrl function.

itemIndex integer The zero-based index into the list where the item
will be placed. Pass -1 to insert the item at the end
of the list.

itemLabel string The label to be associated with the value being
inserted.

itemValue depends on
type of list
control

The value to be associated with the label being
inserted. The data type must be the same as the data
type of the control.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

For picture rings, the “label” is actually an image, and you pass the pathname of the image as the
itemLabel parameter. The image pathname may be a complete pathname or a simple
filename. If a simple filename, the image is located in the project. If not located in the project,
it is located in the directory of the project. If you pass NULL or the empty string, a placeholder
for the image is created, which can be filled using ReplaceListitem or SetImageBits .

You can create columns in a list box control by embedding escape codes in the itemLabel string.
Use \033 to indicate an escape code, followed by p (for pixel), followed by a justification code

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-131 LabWindows/CVI User Interface Reference

of l (left), c (center), or r (right). For example, the following code sets a left-justified column
at the 100- and 200-pixel positions.

InsertListItem (handle, cID, 0,
 "Chevrolet\033p100lCorvette\033p200lRed", 0);

InsertListItem (handle, cID, 1,
 "Ford\033p100lProbe\033p200lBlack", 0);

The preceding code segment creates the following tab format.

In the following example, the code segment sets a centered column at the 32-, 130-, and 230-
pixel positions.

InsertListItem (handle, cID, 0,
 " \033p32cChevrolet \033p130cCorvette \033p230cRed", 0);
InsertListItem (handle, cID, 1,
 "\033p32cFord\033p130cProbe\033p230cBlack", 0);

The preceding code segment creates the following tab format.

The code that inserts a vertical line is \033vline . The vertical line is added at the current
position in the label.

You can also use escape codes to change the foreground and background colors of characters in
a list box. The escape codes only affect the label that they are embedded into. Setting the color
changes it until the color is changed again or the end of the line is reached.

To change the foreground color, the code is \033fgXXXXXX where XXXXXX is a 6 digit RGB
value specified in hex.

To change the background color, the code is \033bgXXXXXX where XXXXXX is a 6 digit RGB
value specified in hex.

To change either color back to the default color for the text, insert default instead of the 6
digit RGB value.

You can insert a separator bar into a ring control (Ring, Menu Ring, Recessed Menu Ring, or
Pop-up Menu Ring) by embedding the escape code \033m- in the itemLabel string.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-132 © National Instruments Corporation

InsertSeparator

int status = InsertSeparator (int menuBarHandle, int menuID,
int beforeMenuItemID);

Purpose

This function inserts a new separator bar in the menu.

Parameters

Input menuBarHandle integer The specifier for a particular menu bar that is
currently in memory. This handle will have been
returned by LoadMenuBar or NewMenuBar.

menuID integer The ID for a particular menu within a menu bar.
The Menu ID should be a constant name
(located in the .uir header file) generated by
the User Interface Editor or a value returned by
the NewMenu function.

beforeMenuItemID integer The separator bar is inserted before (above) this
menu item. To place the separator at the end
(bottom) of the menu item list, enter -1 as the
Before Menu Item ID.

Return Value

status integer Refer to Appendix A for error codes.

InsertTextBoxLine

int status = InsertTextBoxLine (int panelHandle, int controlID , int lineIndex,
char text[]);

Purpose

This function inserts a string at the specified text box line.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-133 LabWindows/CVI User Interface Reference

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

lineIndex integer The zero-based index of a line in the specified text box.
Pass -1 to insert the item at the end of the text box.

text string The text to be inserted at the specified Line Index.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

A text box in the User Interface Library can have only a limited number of lines. The number of
lines multiplied by the pixel height of the font must be less than 32767, or else the text box will
not scroll. In a text box that uses NIDialogMetaFont or NIEditorMetaFont, you can have a
maximum of about 2500 lines.

InstallCtrlCallback

int status = InstallCtrlCallback (int panelHandle, int controlID ,
CtrlCallbackPtr eventFunction,
void * callbackData);

Purpose

This function installs a control callback. The InstallCtrlCallback function call takes a
panel handle and control ID, the name of the event function that processes events for that
control, and callback data of any type.

When an event is generated by the specified control (after the callback is installed), the event
function is called.

This event function (type CtrlCallbackPtr) takes the form:

int CVICALLBACK EventFunctionName (int panelHandle, int controlID , int event,
void * callbackData, int eventData1,
int eventData2);

The event function is passed the panel handle and control ID of the control generating the event.
Callback data defined by the user is also passed to the event function as well as the type of the
event (such as a left mouse click), and any additional event data (such as the mouse position at

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-134 © National Instruments Corporation

the time of a left mouse click). The possible control events and associated event data are shown
in Table 3-1 of Chapter 3, Programming with the User Interface Library. Also refer to the
online help for the Event Function control on the InstallCtrlCallback function panel.

A control callback can also be installed from the Edit Control panel in the User Interface Editor.

Parameters

Input panelHandle integer The specifier for a particular panel that is
currently in memory. This handle will have
been returned by the LoadPanel ,
NewPanel , or DuplicatePanel function.

controlID integer The defined constant (located in the .uir
header file) which was assigned to the control
by the User Interface Editor, or the ID
returned by the NewCtrl or
DuplicateCtrl function.

eventFunction CtrlCallbackPtr The name of the user function that processes
the control callback.

callbackData void * A pointer to user defined data that is passed to
the callback function.

Return Value

status integer Refer to Appendix A for error codes.

InstallMainCallback

int status = InstallMainCallback (MainCallbackPtr eventFunction,
void * callbackData, int getIdleEvents);

Purpose

This function installs a main callback that is called for all panel, control, and menu events.

The InstallMainCallback function takes the name of an event function a pointer to
callback data of any type, and a Boolean indicating whether or not to get idle events. (For a
further discussion of the main callback, see the class help for Callback Functions.)

The getIdleEvents feature allows program execution to proceed when it would normally be
suspended. For example, the program would normally be suspended in GetUserEvent or
RunUserInterface when the user holds the mouse button down on a control or pull-down
menu. Idle events occur continuously, even under these circumstances. Since the main callback

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-135 LabWindows/CVI User Interface Reference

can receive idle events, the program can continue processing by responding to idle events. Call
SetIdleEventRate to set the rate of idle events.

Note: EVENT_VAL_CHANGED and EVENT_IDLE are the only events that are generated
while a user holds the mouse button down on a control or pull-down menu.

The operating system blocks all events (including idle events) when a top-level panel is
moved or sized.

When any event is generated (after the callback is installed), the event function is called.

This event function (type MainCallbackPtr) takes the form:

int CVICALLBACK EventFunctionName (int panelOrMenuBarHandle,
int controlOrMenuItemID , int event,
void * callbackData, int eventData1,
int eventData2);

The event function is passed information on the source of the callback, either the panel handle
and control ID, or the menu bar handle and menu item ID. Callback data defined by the user is
also passed to the event function. Finally, the event function is also passed the type of the event
(such as a left mouse click), and any additional event data (such as the mouse position at the time
of a left mouse click). The possible events and associated event data that can be processed in the
main callback are listed in Table 3-1 of Chapter 3, Programming with the User Interface
Library. Also refer to the online help for the Event Function control on the
InstallMainCallback function panel.

Parameters

Input eventFunction MainCallbackPt
r

The name of the user function that processes
the main callback.

callbackData void * A pointer to user-defined data passed to the
event function.

getIdleEvents integer 1 = respond to idle events.
0 = ignore idle events.

Return Value

status integer Refer to Appendix A for error codes.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-136 © National Instruments Corporation

InstallMenuCallback

int status = InstallMenuCallback (int menuBarHandle, int menuorMenuItemID ,
MenuCallbackPtr eventFunction,
void * callbackData);

Purpose

This function installs a menu callback. It takes a menu bar handle and menu/menu item ID, the
name of the event function that processes commit events for the menu/menu item, and callback
data of any type.

When an event is generated on the specified menu bar (after the callback is installed), the event
function is called.

This event function (type MenuCallbackPtr) takes the form:

void CVICALLBACK EventFunctionName (int menuBarHandle, int menuItemID,
void * callbackPtr, int panelHandle);

When a commit event is generated by a menu selection, the event function is passed the menu
bar handle, menu item ID, and panel handle of the menu bar generating the event. Callback data
defined by the user is also passed to the event function.

A menu callback can also be installed via the NewMenuItem function, or from the Edit Menu
Bar dialog box in the User Interface Editor.

Parameters

Input menuBarHandle integer The specifier for a particular menu
bar that is currently in memory. This
handle will have been returned by
LoadMenuBar or NewMenuBar.

menuorMenuItemID integer The menu or menu item ID assigned
in the User Interface Editor or
returned by the NewMenu or
NewMenuItem.

eventFunction MenuCallbackPtr The name of the user function that
processes the menu callback.

callbackData void * A pointer to user-defined data that is
passed to the event function.

Return Value

status integer Refer to Appendix A for error codes.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-137 LabWindows/CVI User Interface Reference

InstallMenuDimmerCallback

int status = InstallMenuDimmerCallback (int menuBarHandle,
MenuDimmerCallbackPtr dimmerFunction);

Purpose

This function installs a menu dimmer callback. It takes the handle of a menu bar and the name of
the callback function.

A menu dimmer callback is called just before a pull-down menu appears when a menu bar is
clicked or a menu short-cut key is pressed. The menu bar handle and the handle of the panel on
which the menu bar resides is passed to the specified dimmer function for processing. This
callback function is useful for checking a program’s state and then dimming invalid menu items
before the menu is displayed.

This callback function (type MenuDimmerCallbackPtr) takes the form:

void CVICALLBACK DimmerFunctionName (int menuBarHandle, int panelHandle);

The dimmer function is passed the menu bar handle and panel handle of the menu bar that has
been accessed.

Parameters

Input menuBarHandle integer The specifier for a particular menu bar
that is currently in memory. This handle
will have been returned by
LoadMenuBar or NewMenuBar.

dimmerFunction MenuDimmerCallbackPtrThe name of the user function that
processes the menu dimmer callback.

Return Value

status integer Refer to Appendix A for error codes.

InstallPanelCallback

int status = InstallPanelCallback (int panelHandle, PanelCallbackPtr eventFunction,
void * callbackData);

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-138 © National Instruments Corporation

Purpose

This function installs a panel callback. It takes a panel handle, the name of the event function
that processes events for that panel, and callback data of any type.

When an event is generated on the specified panel (after the callback is installed), the event
function is called.

This event function (type PanelCallbackPtr) takes the form:

int CVICALLBACK EventFunctionName (int panelHandle, int event,
void * callbackData, int eventData1,
int eventData2);

The event function is passed the panel handle of the panel generating the event, callback data
defined by the user, the type of the event (such as a left mouse click), and any additional event
data (such as the mouse position at the time of a left mouse click).

See Table 3-1 in Chapter 3, Programming with the User Interface Library, for the events and
event data that can be processed by a panel callback. Also refer to the online help for the Event
Function control on the InstallPanelCallback function panel.

A panel callback can also be installed from the Edit Panel window in the User Interface Editor.

Parameters

Input panelHandle integer The specifier for a particular panel that is
currently in memory. This handle will have
been returned by the LoadPanel ,
NewPanel , or DuplicatePanel
function.

eventFunction PanelCallbackPtr The name of the user function that processes
the panel callback.

callbackData void * A pointer to user defined data that is passed
to the event function.

Return Value

status integer Refer to Appendix A for error codes.

InstallPopup

int status = InstallPopup (int panelHandle);

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-139 LabWindows/CVI User Interface Reference

Purpose

Displays and activates a panel as a dialog box.

The user cannot operate any other panels while a pop-up panel is active.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

Return Value

status integer Refer to Appendix A for error codes.

IsListItemChecked

int status = IsListItemChecked (int panelHandle, int controlID , int itemIndex,
int * checked);

Purpose

This function returns a Boolean value indicating whether or not a list item is checked.

This function only applies to list boxes with the check mode attribute set.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

itemIndex integer The zero-based index into the list control.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-140 © National Instruments Corporation

Output checked integer Returns a Boolean value indicating whether a list item
is checked.
0 = not checked
1 = checked.

Return Value

status integer Refer to Appendix A for error codes.

LoadMenuBar

int menuBarHandle = LoadMenuBar (int destinationPanelHandle, char filename[] ,
int menuBarResourceID);

Purpose

Loads a menu bar into memory from a User Interface Resource (.uir) file that was created in
the User Interface Editor. The menu bar will reside on the panel specified by the destination
panel handle.

The function returns a menu bar handle which is used in subsequent function calls to specify the
menu bar.

Note: The ATTR_REPORT_LOAD_FAILURE and ATTR_ALLOW_MISSING_CALLBACKS
system attribute affect the behavior of this function when an error is encountered. See
the SetSystemAttribute function.

Parameters

Input destinationPanelHandle integer The handle for the panel on which the menu
bar is to reside.

filename string The name of the User Interface Resource file
which contains the menu bar.

menuBarResourceID integer The defined constant which was assigned to the
menu bar in the User Interface Editor.

Return Value

menuBarHandle integer The value you can use in subsequent function
calls to specify this menu bar. Refer to
Appendix A for error codes.

Parameter Discussion

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-141 LabWindows/CVI User Interface Reference

destinationPanelHandle will have been returned by the LoadPanel , NewPanel , or
DuplicatePanel function. If the destination panel is not currently in memory, pass a zero as
the destination panel handle and this menu bar can later be assigned to a panel using
SetPanelMenuBar .

You can use a complete pathname or a simple filename with the filename parameter. If the
name is a simple filename (in other words, contains no directory path) and is listed in the project,
then the file is loaded using the pathname from the project. Otherwise, the file is loaded from
the directory containing the project.

The menuBarResourceID can be found in the .uir header file and is used only once to load
the menu bar into memory. Subsequent function calls will refer to the menu bar with the menu
bar handle returned by this function.

See also

LoadMenuBarEx, SetSystemAttribute

LoadMenuBarEx

int menuBarHandle = LoadMenuBarEx (int destinationPanelHandle, filename[] ,
int menuBarResourceID,
void * callingModuleHandle);

Purpose

LoadMenuBarEx loads a menu bar into memory from a User Interface Resource (.uir) that
was file created in the User Interface Editor. LoadMenuBarEx is similar to LoadMenuBar ,
except that, when you use LoadMenuBarEx on Windows 95 and NT, the callback functions
you reference in your .uir file can be defined in the DLL that contains the call to
LoadMenuBarEx . On platforms other than Windows 95 and NT, LoadMenuBarEx works
exactly like LoadMenuBar .

Note: The ATTR_REPORT_LOAD_FAILURE and ATTR_ALLOW_MISSING_CALLBACKS
system attribute affect the behavior of this function when an error is encountered. See
the SetSystemAttribute function.

Parameters

Input destinationPanelHandle integer The handle of the panel on which the menu bar is
to reside.

filename string The name of the User Interface Resource File that
contains the menu bar.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-142 © National Instruments Corporation

panelResourceID integer The defined constant assigned to the menu bar in
the User Interface Editor.

callingModuleHandle void
pointer

Usually, the module handle of the calling DLL.
You can use __CVIUserHInst. Zero
indicates the project or executable.

Return Value

menuBarHandle integer The value you can use in subsequent function
calls to specify this menu bar. Negative values
indicate that an error occurred. Refer to Appendix
A for error codes.

Using this Function

Refer to the function help for LoadMenuBar for detailed information on that function. When
you call LoadMenuBar , the User Interface Library attempts to find the callback functions
referenced in the .uir file. It searches the symbols defined in the project or in object, library, or
DLL import library modules that have been loaded using LoadExternalModule . It does not
search symbols that are defined in a DLL but not exported in the DLL import library.

You may want a DLL to load a menu bar and link to callback functions defined in (but not
exported from) the DLL. You can do this by calling LoadMenuBarEx . You must specify the
module handle of the DLL in the callingModuleHandle parameter. You can do this by using the
pre-defined variable __CVIUserHInst . (If you pass zero for the callingModuleHandle, the
function behaves identically to LoadMenuBar .)

LoadMenuBarEx first searches the DLL symbols to find the callback functions referenced in
the .uir . If there are any callback functions that it cannot find, it then searches for them in the
same manner as LoadMenuBar .

LoadMenuBarEx expects the DLL to contain a table of the callback functions referenced by
the .uir files loaded by the DLL. If you create the DLL in LabWindows/CVI, the table is
included automatically. If you create the DLL using an external compiler, you must arrange for
this table to be included in the DLL. You can do this by using the External Compiler Support
command in the Build menu of the Project window. You must have a LabWindows/CVI project
that lists all of the .uir files loaded by the DLL. In the External Compiler Support dialog box,
specify the name of an object file to contain the table of callback function names. Then click on
the Create button to create the object file. You must include the object file in the external
compiler project you use to create the DLL.

The External Compiler Support information is contained in the LabWindows/CVI project file. If
that project file is loaded and you modify and save any of the .uir files, LabWindows/CVI
automatically regenerates the object file.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-143 LabWindows/CVI User Interface Reference

See also

LoadMenuBar, LoadPanelEx, SetSystemAttribute

LoadPanel

int panelHandle = LoadPanel (int parentPanelHandle, char filename[] ,
int panelResourceID);

Purpose

Loads a panel into memory from a User Interface Resource (.uir) file created in the User
Interface Editor.

The panel will be a child panel of the parent panel specified by parentPanelHandle. To make
the panel a top-level panel, enter 0 for the parentPanelHandle. The loaded panel can then be
displayed with the DisplayPanel function.

The function returns a panel handle which is used in subsequent function calls to specify the
panel.

Note: The ATTR_REPORT_LOAD_FAILURE and ATTR_ALLOW_MISSING_CALLBACKS
system attribute affect the behavior of this function when an error is encountered. See
the SetSystemAttribute function.

Parameters

Input parentPanelHandle integer The handle of the panel into which the panel is
loaded as a child panel. Pass 0 to load the panel
as a top-level window.

filename string The name of the User Interface Resource file
which contains the panel.

panelResourceID integer The defined constant which was assigned to the
panel in the User Interface Editor.

Return Value

panelHandle integer The value you can use in subsequent function
calls to specify this panel. Negative values
indicate that an error occurred. Refer to
Appendix A for error codes.

Parameter Discussion

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-144 © National Instruments Corporation

To make the panel a top-level panel, enter 0 for parentPanelHandle. If the panel is being
loaded from a LabWindows for DOS .uir file, use the Return Value from the function
DOSCompatWindow as the parentPanelHandle.

You can use a complete pathname or a simple filename for filename. If the name is a simple
filename (in other words, contains no directory path) and is listed in the project, then the file is
loaded using the pathname from the project. Otherwise, the file is loaded from the directory
containing the project.

The panelResourceID can be found in the .uir header file and is used only once to load the
panel into memory. Subsequent function calls refer to this panel with the panelHandle returned
by this function.

See also

LoadPanelEx, SetSystemAttribute

LoadPanelEx

int panelHandle = LoadPanelEx (int parentPanelHandle, char filename[] ,
int panelResourceID, void * callingModuleHandle);

Purpose

LoadPanelEx loads a panel into memory from a User Interface Resource (.uir) file created
in the User Interface Editor. LoadPanelEx is similar to LoadPanel , except that, when you
use LoadPanelEx your program on Windows 95 and NT, the callback functions you reference
in your .uir file can be defined in the DLL that contains the call to LoadPanelEx . On
platforms other than Windows 95 and NT, LoadPanelEx works exactly like LoadPanel .

Note: The ATTR_REPORT_LOAD_FAILURE and ATTR_ALLOW_MISSING_CALLBACKS
system attribute affect the behavior of this function when an error is encountered. See
the SetSystemAttribute function.

Parameters

Input parentPanelHandle integer The handle of the panel into which the panel is
loaded as a child panel . Pass 0 to load the panel
as a top-level window.

filename string The name of the User Interface Resource File
that contains the panel.

panelResourceID integer The defined constant assigned to the panel in the
User Interface Editor.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-145 LabWindows/CVI User Interface Reference

callingModuleHandle void
pointer

Usually, the module handle of the calling DLL.
You can use __CVIUserHInst. Zero
indicates the project or executable.

Return Value

panelHandle integer The value you can use in subsequent function
calls to specify this panel. Negative values
indicate that an error occurred. Refer to
Appendix A for error codes.

Using this Function

Refer to the function help for LoadPanel for detailed information on that function.

When you call LoadPanel, the User Interface Library attempts to find the callback functions
referenced in the .uir file. It searches the symbols defined in the project or in object, library, or
DLL import library modules that have been loaded using LoadExternalModule . It does not
search symbols that are defined in a DLL but not exported in the DLL import library.

You may want a DLL to load a panel and link to callback functions defined in (but not exported
from) the DLL. You can do this by calling LoadPanelEx . You must specify the module
handle of the DLL in the callingModuleHandle parameter. You can do this by using the pre-
defined variable __CVIUserHInst . (If you pass zero for the callingModuleHandle, the
function behaves identically to LoadPanel .)

LoadPanelEx first searches the DLL symbols to find the callback functions referenced in the
.uir . If there are any callback functions that it cannot find, it then searches for them in the
same manner as LoadPanel .

LoadPanelEx expects the DLL to contain a table of the callback functions referenced by the
.uir files loaded by the DLL. If you create the DLL in LabWindows/CVI, the table is included
automatically. If you create the DLL using an external compiler, you must arrange for this table
to be included in the DLL. You can do this by using the External Compiler Support command
in the Build menu of the Project window. You must have a LabWindows/CVI project that lists
all of the .uir files loaded by the DLL. In the External Compiler Support dialog box, specify
the name of an object file to contain the table of callback function names. Then click on the
Create button to create the object file. You must include the object file in the external compiler
project you use to create the DLL.

The External Compiler Support information is contained in the LabWindows/CVI project file. If
that project file is loaded and you modify and save any of the .uir files, LabWindows/CVI
automatically regenerates the object file.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-146 © National Instruments Corporation

See also

LoadPanel, LoadMenuBarEx, SetSystemAttribute

MakeColor

int rgb = MakeColor (int red, int green, int blue);

Purpose

Generates a color (RGB) value from the individual constituent red, green, and blue intensity
levels.

An RGB value is a 4-byte integer with the hexadecimal format 0x00RRGGBB. RR, GG, and BB
are the respective red, green, and blue components of the color value. The first sixteen colors
listed are the sixteen standard colors.

Predefined RGB Values:

0xFF0000L = VAL_RED
0x00FF00L = VAL_GREEN
0x0000FFL = VAL_BLUE
0x00FFFFL = VAL_CYAN
0xFF00FFL = VAL_MAGENTA
0xFFFF00L = VAL_YELLOW
0x800000L = VAL_DK_RED
0x000080L = VAL_DK_BLUE
0x008000L = VAL_DK_GREEN
0x008080L = VAL_DK_CYAN
0x800080L = VAL_DK_MAGENTA
0x808000L = VAL_DK_YELLOW
0xCCCCCCL = VAL_LT_GRAY
0x808080L = VAL_DK_GRAY
0x000000L = VAL_BLACK
0xFFFFFFL = VAL_WHITE
0xA0A0A0L = VAL_GRAY
0xE5E5E5L = VAL_OFFWHITE
VAL_PANEL_GRAY = VAL_LT_GRAY

Parameters

Input red integer The red level of the new color. Any integer value
between 0 and 255 is valid.
 0 = No red component.
255 = Maximum red component.

green integer The green level of the new color. Any integer value
between 0 and 255 is valid.
 0 = No green component.
255 = Maximum green component.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-147 LabWindows/CVI User Interface Reference

blue integer The blue level of the new color. Any integer value
between 0 and 255 is valid.
 0 = No blue component.
255 = Maximum blue component.

Return Value

rgb integer Return Value indicating the RGB value. Refer to
Appendix A for error codes.

MakePoint

Point point = MakePoint (int xCoordinate, int yCoordinate);

Purpose

Returns a Point structure with the specified values. The Point structure defines the location of
a point.

This function is useful when calling canvas control functions that require Point structures as
input parameters. You can embed a call to MakePoint in calls to these functions, thereby
eliminating the need to declare a Point variable.

Parameters

Input xCoordinate integer The horizontal location of the point.

yCoordinate integer The vertical location of the point.

Return Value

point Point A Point structure containing the specified coordinate
values.

See Also

PointSet, MakeRect

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-148 © National Instruments Corporation

MakeRect

Rect rect = MakeRect (int top, int left, int height, int width);

Purpose

Returns a Rect structure with the specified values. The Rect structure defines the location and
size of a rectangle.

This function is useful when calling canvas control functions that require Rect structures as
input parameters. You can embed a call to MakeRect in calls to these functions, thereby
eliminating the need to declare a Rect variable.

Parameters

Input top integer The location of the top edge of the rectangle.

left integer The location of the left edge of the rectangle.

height integer The height of the rectangle.

width integer The width of the rectangle.

Return Value

rect Rect A Rect structure containing the specified coordinate values.

See Also

RectSet, MakePoint

MessagePopup

int status = MessagePopup (char title [] , char message[]);

Purpose

Displays a message in a dialog box and waits for the user to select the OK button.

Parameters

Input title string The title to be displayed on the dialog box.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-149 LabWindows/CVI User Interface Reference

message string The message to be displayed in the dialog box. To
display a multi-line message, embed newline characters
(\n) in the message string.

Return Value

status integer Refer to Appendix A for error codes.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-150 © National Instruments Corporation

MultiFileSelectPopup

int status = MultiFileSelectPopup (char defaultDirectory [] , char defaultFileSpec[] ,
char fileTypeList [] char title [] , int
restrictDirectory , int restrictExtension, int
allowCancel,
int numberofSelectedFiles, char ** fileList);

Purpose

Displays a file-selection dialog box and waits for the user to select a file or cancel.

Parameters

Input defaultDirectory string The initial directory. If "" is entered, then the
current working directory will be used.

defaultFileSpec string A string that specifies which files to display. For
example, "*.c" would cause all files with the
extension .c to be displayed.

fileTypeList string A list of file types, separated by semicolons, to be
contained in the File Type List of the File Select
Pop-up when restrictExtension is FALSE. For
example, "*.c;*.h" allows the user to select
"*.c" or "*.h" from the File Type List.
("*.*" is always available).

title string The title of the dialog box.

restrictDirectory integer If non-zero, the user cannot change directories or
drives. If zero, the user can change directories or
drives.

restrictExtension integer If non-zero, the user is limited to files with the
default extension. If zero, the user can select files
with any extension.

allowCancel integer If non-zero, the user can cancel out of the File
Select Popup. If zero, the user can leave the pop-
up only by making a selection.

Output numberofSelectedFiles integer The number of files selected by the user.

fileList array
of
strings

The buffer in which the user’s selection is
returned. The buffer is automatically allocated by
MultiFileSelectPopup and is accessible as
an array of strings.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-151 LabWindows/CVI User Interface Reference

Return Value

status integer Refer to Appendix A for error codes.

Return Codes

0 VAL_NO_FILE_SELECTED

1 VAL_EXISTING_FILE_SELECTED

Parameter Discussion

The defaultFileSpec is shown in the file name control when the pop-up is first displayed. If you
specify an actual file name, such as test.c , that name appears in the file name box and also in
the file list box. The defaultFileSpec cannot contain a directory path.

fileList is allocated dynamically, as is each string. When they are no longer needed, your
program should free each string, and then free the array using the free function.

NewBitmap

int status = NewBitmap (int bytesPerRow, int pixelDepth, int width, int height,
int colorTable[], unsigned char bits[],
unsigned char mask[], int * bitmapID);

Purpose

Creates a bitmap object. The bitmap ID can then be passed any function that accepts a bitmap,
such as CanvasDrawBitmap or ClipboardPutBitmap .

You can discard the bitmap object by passing its ID to DiscardBitmap .

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-152 © National Instruments Corporation

Parameters

Input bytesPerRow integer The number of bytes on each scan line of the image.

pixelDepth integer The number of bits per pixel.

width integer The width of the image, in pixels.

height integer The height of the image, in pixels.

colorTable integer
array

An array of RGB color values, or NULL if
pixelDepth is greater than 8.

bits unsigned
char array

An array of bits that determine the colors to be
displayed on each pixel in the image.

mask unsigned
char array

An array containing one bit per pixel in the image.
Each bit specifies whether the pixel is actually drawn.
May be NULL.

Output bitmapID integer An ID that serves as a handle to the bitmap object.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

Depending on the pixelDepth and width , the number of bits per line in the bits array might not
be an even multiple of 8. If not, then the extra bits needed to get to the next byte boundary are
considered "padding". If you set bytesPerRow to be a positive number, then the bits for each
scan line must start on a byte boundary, and so padding may be required. In fact, you can set
bytesPerRow to be larger than the minimum number of bytes actually needed. The extra bytes
are also considered padding. If you pass -1, there is no padding at all. The bits for each scan line
immediately follow the bits for the previous scan line.

The valid values for pixelDepth are 1, 4, 8, 24, and 32.

If the pixelDepth is 8 or less, the number of entries in the colorTable array must equal 2 raised
to the power of the pixelDepth parameter. The bits array contain indices into the colorTable
array. If the pixelDepth is greater than 8, the colorTable parameter is not used. Instead the bits
array contains actual RGB color values, rather than indices into the colorTable array.

For a pixelDepth of 24, each pixel is represented by a 3-byte RGB value of the form
0xRRGGBB, where RR, GG, and BB represent the red, green and blue intensity of the color. The
RR byte should always be at the lowest memory address of the three bytes.

If the pixelDepth is 32, each pixel in the bits array is represented by a 32-bit RGB value of the
form 0x00RRGGBB, where RR, GG, and BB represent the red, green and blue intensity of the

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-153 LabWindows/CVI User Interface Reference

color. The 32-bit value is treated as a native 32-bit integer value for the platform. The most
significant byte is always ignored. The BB byte should always be in the least significant byte.
On a little-endian platform (for example, Intel processors), BB would be at the lowest memory
address. On a big-endian platform (for example, Motorola processors), BB would be at the
highest address. Note that this differs from the format of the bits array when the pixelDepth is
24.

In the mask array, a bit value of 1 indicates that the pixel is drawn. 0 indicates that the pixel is
not drawn. Exception: If an image has a pixelDepth of 1, pixels with a bits value of 1
(foreground pixels) are always drawn and the mask affects only the pixels with a bitmap of 0
(background pixels). Each row of the mask must be padded to the nearest even-byte boundary.
For example, if the width of the image is 21 pixels, then there must be 32 bits (in other words, 4
bytes) of data in each row of the mask.

A mask is useful for achieving transparency.

You may pass NULL if you do not need a mask.

See Also

GetBitmapFromFile, GetCtrlBitmap, GetCtrlDisplayBitmap, GetPanelDisplayBitmap,
ClipboardGetBitmap, ClipboardPutBitmap, GetBitmapData, SetCtrlBitmap,
PlotBitmap, CanvasDrawBitmap, DiscardBitmap.

NewCtrl

int controlID = NewCtrl (int panelHandle, int controlStyle, char controlLabel[] ,
int controlTop, int controlLeft);

Purpose

This function creates a new control and returns a control ID used to specify the control in
subsequent function calls.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-154 © National Instruments Corporation

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlStyle integer See Table 3-10 in Chapter 3 for a complete listing of all
control styles.

controlLabel string The label of the new control. Pass "" or 0 for no label.

controlTop integer The vertical coordinate at which the upper left corner of
the control (not including labels) is placed.

controlLeft integer The horizontal coordinate at which the upper left corner
of the control (not including labels) is placed.

Return Value

controlID integer Returns the ID used to specify this control in
subsequent function calls. Negative values indicate that
an error occurred. Refer to Appendix A for error codes.

Parameter Discussion

controlTop and controlLeft coordinates must be integer values from -32768 to 32767. The
origin (0,0) is at the upper-left corner of the panel (directly below the title bar) before the panel
is scrolled.

NewMenu

int menuID = NewMenu (int menuBarHandle, char menuName[] ,
int beforeMenuID);

Purpose

This function adds a new menu to the specified menu bar and returns a Menu ID to be used to
specify the menu in subsequent function calls.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-155 LabWindows/CVI User Interface Reference

Parameters

Input menuBarHandle integer The specifier for a particular menu bar that is currently
in memory. This handle will have been returned by
LoadMenuBar or NewMenuBar.

menuName string The new menu name that is added to the menu bar.

beforeMenuID integer The new menu will be inserted before this menu. To
place the new menu at the end of the menu bar, enter -1
for the beforeMenuID.

Return Value

status integer The ID which will be used to reference this menu in
subsequent function calls. Negative values indicate that
an error occurred. Refer to Appendix A for error codes.

NewMenuBar

int menuBarHandle = NewMenuBar (int destinationPanelHandle);

Purpose

This function creates a new menu bar to reside on the specified destination panel and returns the
new menu bar handle.

The new menu bar handle is used in subsequent function calls to specify this menu bar.

Parameters

Input destinationPanelHandle integer The handle for the panel on which the menu bar
is to reside.

Return Value

menuBarHandle integer Used in subsequent function calls to specify the
menu bar. Refer to Appendix A for error codes.

Parameter Discussion

If the destination panel is not currently in the memory, pass a zero as the
destinationPanelHandle and this menu bar can later be assigned to a panel using
SetPanelMenuBar .

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-156 © National Instruments Corporation

NewMenuItem

int menuItemID = NewMenuItem (int menuBarHandle, int menuID,
char itemName[] ,int beforeMenuItemID,
int shortCutKey, MenuCallbackPtr eventFunction,
void * callbackData);

Purpose

This function adds a new menu item to the specified menu and returns the MenuItemID to be
used in subsequent calls to specify the menu item.

Parameters

Input menuBarHandle integer The specifier for a particular menu bar
that is currently in memory. This handle
will have been returned by
LoadMenuBar or NewMenuBar

menuID integer The ID for a particular menu within a
menu bar. The Menu ID should be a
constant name (located in the .uir
header file) generated by the User
Interface Editor or a value returned by
the NewMenu function.

itemName string The name of the new menu item.

beforeMenuItemID integer The new menu item will be inserted
before (above) this menu item. To place
the new menu item at the end (bottom) of
the menu item list, enter -1 for the
beforeMenuItemID.

shortCutKey integer Specifies the key used to automatically
select the menu item.

eventFunction MenuCallbackPtr The name of the user function that
process the menu item callback.

callbackData void * If you process the menu item event
through a callback function, you can
supply a pointer to user-defined data in
this control. If you do not need to pass
user-defined data to the callback
function, or if you are not using a
callback function to process the menu
item event, supply a value of zero.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-157 LabWindows/CVI User Interface Reference

Return Value

menuItemID integer Returns the ID which will be used to
specify this menu item in subsequent
function calls. Negative values indicate
that an error occurred. Refer to
Appendix A for error codes.

Parameter Discussion

Valid Shortcut Keys:

Shortcut keys are 4-byte integers consisting of three bit fields, 0x00MMVVAA, where:

MM = the modifier key

VV = the virtual key

AA = the ASCII key

When a shortcut key is constructed, modifier keys are bit-wise OR’ed with a virtual key or an
ASCII key. Code for either the ASCII field or the virtual key field will be all zeros.

For example:

VAL_SHIFT_MODIFIER | VAL_F1_VKEY

produces a shortcut key of <Shift-F1>, and

VAL_MENUKEY_MODIFIER | 'D'

produces a shortcut key of <Ctrl-D> on the PC and <meta-D> on the SPARCstation. Virtual
keys do not require modifiers but ASCII keys require at least one modifier.

The modifier keys are:

VAL_SHIFT_MODIFIER
VAL_MENUKEY_MODIFIER (the <Ctrl> key)
VAL_SHIFT_AND_MENUKEY

The virtual keys are:

VAL_FWD_DELETE_VKEY (not available on the SPARCstation)
VAL_BACKSPACE_VKEY (on the SPARCstation)
VAL_ESC_VKEY
VAL_TAB_VKEY
VAL_ENTER_VKEY
VAL_UP_ARROW_VKEY
VAL_DOWN_ARROW_VKEY
VAL_LEFT_ARROW_VKEY

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-158 © National Instruments Corporation

VAL_RIGHT_ARROW_VKEY
VAL_INSERT_VKEY
VAL_HOME_VKEY
VAL_END_VKEY
VAL_PAGE_UP_VKEY
VAL_PAGE_DOWN_VKEY
VAL_F1_VKEY
VAL_F2_VKEY
VAL_F3_VKEY
VAL_F4_VKEY
VAL_F5_VKEY
VAL_F6_VKEY
VAL_F7_VKEY
VAL_F8_VKEY
VAL_F9_VKEY
VAL_F10_VKEY
VAL_F11_VKEY
VAL_F12_VKEY

The possible ASCII keys are:

'A' or 'a'
'B' or 'b'
'C' or 'c'
.
.
.
'Z' or 'z'

eventFunction

If you want to process the menu item event through a callback function, supply the name of that
function as this parameter. This event function (type MenuCallbackPtr) should be
prototyped as follows:

void CVICALLBACK EventFunctionName (int menuBarHandle, int menuItemID,
void * callbackData, int panelHandle);

The event function is passed the menu bar handle, menuItemID, and panel handle of the menu
bar generating the callback. Callback data defined by the user is also passed to the event
function.

If you do not want to process the menu item event through a callback function, supply a value of
zero (0) as this parameter.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-159 LabWindows/CVI User Interface Reference

NewPanel

int panelHandle = NewPanel (int parentPanelHandle, char panelTitle[] ,
int panelTop, int panelLeft, int panelHeight,
int panelWidth);

Purpose

This function creates a new child panel inside the specified parent panel and returns the new
panel handle.

To make the panel a top-level panel, enter 0 for the parent panel handle.

The new panel handle is used in subsequent function calls to specify this panel.

Parameters

Input parentPanelHandle integer The handle of the panel into which the new
child panel is loaded. To make the panel a
top-level panel, enter 0.

panelTitle string The title for the new panel.

panelTop integer The vertical coordinate at which the upper left
corner of the panel (directly below the title bar)
is placed.

panelLeft integer The horizontal coordinate at which the upper
left corner of the panel (directly below the title
bar) is placed.

panelHeight integer The vertical size of the new panel. The height
of the panel does not include the title bar or
panel frame.

panelWidth integer Size of the new panel in window coordinates.
The width of the panel does not include the
panel frame.

Return Value

panelHandle integer Returns a panel handle to be used in subsequent
function calls to reference the panel. Refer to
Appendix A for error codes.

Parameter Discussion

The panelTop and panelLeft coordinates must be integer values from -32768 to 32767, or
VAL_AUTO_CENTER to center the panel. For a top-level panel, (0,0) is the upper-left corner of

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-160 © National Instruments Corporation

the screen. For a child panel, (0,0) is the upper-left corner of the parent panel (directly below the
title bar) before the parent panel is scrolled. panelHeight and panelWidth must be integer
values from 0 to 32767.

NewSubMenu

int subMenuID = NewSubMenu (int menuBarHandle, int menuItemID);

Purpose

This function creates a submenu for a specified menu item and returns a subMenuID to specify
the submenu in subsequent function calls.

A submenu appears as a triangle on the right side of the menu item.

Parameters

Input menuBarHandle integer The specifier for a particular menu bar that is currently
in memory. This handle will have been returned by
LoadMenuBar or NewMenuBar

menuItemID integer This is the menu item on which the submenu is to be
attached. The Menu Item ID will have been a constant
name supplied in the User Interface Editor or a value
returned by the NewMenuItem function.

Return Value

subMenuID integer The ID which will be used to specify this submenu in
subsequent function calls. Negative values indicate that
an error occurred. Refer to Appendix A for error codes.

PlotArc

int plotHandle = PlotArc (int panelHandle, int controlID , double x1, double y1,
double x2, double y2, int beginAngle, int arcAngle,
int color, int fillColor);

Purpose

Plots an arc into a graph control.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-161 LabWindows/CVI User Interface Reference

The arc is defined by specifying two opposing corners of a rectangle that enclose the arc, along
with a beginning angle (in tenths of degrees) and an arc angle (in tenths of degrees).

For example, if X1=0.0 , Y1=0.0 , X2=200.0 , Y2=200.0 , Beg Angle=0 , and Arc
Angle=3600 , then a circle centered on coordinates (100.0,100.0) would be plotted on the
graph.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header
file) which was assigned to the control by the User
Interface Editor, or the ID returned by the NewCtrl
or DuplicateCtrl function.

x1 double-
precision

The horizontal coordinate of one corner of the
rectangle that encloses the arc.

y1 double-
precision

The vertical coordinate of one corner of the rectangle
that encloses the arc.

x2 double-
precision

The horizontal coordinate of the opposing corner of
the rectangle that encloses the arc.

y2 double-
precision

The vertical coordinate of the opposing corner of the
rectangle that encloses the arc.

beginAngle integer The starting angle of the arc, in tenths of degrees.
Positive angles proceed counter-clockwise and
negative angles proceed clockwise, from 0 to 3600.

arcAngle integer The sweep angle of the arc, in tenths of degrees.
Positive angles proceed counter-clockwise and
negative angles proceed clockwise, from 0 to 3600.

color integer Specifies the color of the curve to be plotted. An
RGB value is a 4-byte integer with the hexadecimal
format 0x00RRGGBB. RR, GG, and BB are the
respective red, green, and blue components of the
color value. See Table 3-3 in Chapter 3 for a list of
the common colors.

fillColor integer Specifies the fill color of the figure.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-162 © National Instruments Corporation

Return Value

plotHandle integer The handle for the plot. This handle can be passed to
DeleteGraphPlot to delete the individual plot.
Refer to Appendix A for error codes. It can also be
passed to SetPlotAttribute and
GetPlotAttribute

PlotBitmap

int plotHandle = PlotBitmap (int panelHandle, int controlID , double x, double y,
double width , double height, char fileName[]);

Purpose

Plots a bitmapped image into a graph control.

The origin of the image is expressed in terms of the X and Y coordinates of the graph. It
pinpoints the lower left corner of the image.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

x double-
precision

The x-coordinate of the lower left corner of the bitmapped
image.

y double-
precision

The y-coordinate of the lower left corner of the bitmapped
image.

width double-
precision

The width, in graph units, of the area in which to fit the
bitmapped image. If zero, then the width is the width of
the image. If nonzero, the image is stretched or shrunk to
fit.

height double-
precision

The height, in graph units. of the area in which to fit the
bitmapped image. If zero, then the height is the height of
the image. If nonzero, the image is stretched or shrunk to
fit.

fileName string The name of the file which contains the image.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-163 LabWindows/CVI User Interface Reference

Return Value

plotHandle integer The handle for the plot. This handle can be passed to
SetImageBits , GetImageBits ,
SetPlotAttribute , GetPlotAttribute , or
DeleteGraphPlot . Refer to Appendix A for error
codes.

Parameter Discussion

fileName can be a complete pathname or a simple filename. If it is a simple filename (in other
words, contains no directory path):

• If the file is listed in the project, then the file is loaded using the pathname from the project.

• Otherwise, the file is loaded from the directory containing the project.

The valid image types appear in the following list.

PCX: Windows and UNIX
BMP, DIB , RLE, ICO: Windows only
WMF: Windows 95 and NT only
XWD: UNIX only

fileName may be NULL or the empty string. This is useful when you want to define the image
programmatically by calling SetCtrlBitmap using the PlotHandle returned by this function.
The plot is not visible until a valid image is specified.

See Also

SetPlotAttribute, GetPlotAttribute

PlotIntensity

int plotHandle = PlotIntensity (int panelHandle, int controlID , void * zArray ,
int numberOfXPoints, int numberOfYPoints,
int zDataType, ColorMapEntry colorMapArray [] ,
int hiColor , int numberOfColors, int interpColors,
int interpPixels);

Purpose

This function draws a solid rectangular plot in a graph control. If you want to apply scaling
factors and offsets to the data values, see the PlotScaledIntensity function.

The plot consists of pixels whose colors correspond to the magnitude of data values in a
two-dimensional array and whose coordinates correspond to the locations of the data values in
the array. For instance, the pixel associated with zArray[2][3] is located at {x=3, y=2}.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-164 © National Instruments Corporation

The size of the lower left corner of the plot area is at {0, 0}.

The upper right corner of the plot area is at {X-1, Y-1}, where,

X = Number of X Points
Y = Number of Y Points

Parameters

Input panelHandle integer The specifier for a particular panel that is currently
in memory. This handle will have been returned
by the LoadPanel , NewPanel , or
DuplicatePanel function.

controlID integer The defined constant (located in the .uir header
file) which was assigned to the control by the User
Interface Editor, or the ID returned by the
NewCtrl or DuplicateCtrl function.

zArray numeric
array

An array that contains the data values that are to
be converted to colors.

numberOfXPoints integer The number of points to be displayed along the
x-axis in each row.

numberOfYPoints integer The number of points to be displayed along the
y-axis in each column.

zDataType integer Specifies the data type of the elements in zArray ,
as well as the data type of the Color Map values.

colorMapArray ColorMap
Entry

An array of ColorMapEntry structures which
specifies how the data values in zArray are
translated into colors. The maximum number of
entries is 255.

hiColor integer The RGB value to which all zArray values that
are higher than the highest data value in
colorMapArray are translated.

numberOfColors integer The number of entries in colorMapArray . Must
be less than or equal to 255.

interpColors integer Indicates how to assign colors to zArray data
values that do not exactly match the data values in
the colorMapArray .

interpPixels integer Indicates how pixels between the pixels assigned
to the zArray values are colored.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-165 LabWindows/CVI User Interface Reference

Return Value

plotHandle integer The handle for the plot. This handle can be passed to
SetPlotAttribute , GetPlotAttribute , or
DeleteGraphPlot . Refer to Appendix A for
error codes.

Parameter Discussion

zArray must be one of the following data types (specified in zDataType):

VAL_DOUBLE
VAL_FLOAT
VAL_INTEGER
VAL_SHORT_INTEGER
VAL_CHAR
VAL_UNSIGNED_INTEGER
VAL_UNSIGNED_SHORT_INTEGER
VAL_UNSIGNED_CHAR

The locations at which the colors are shown on the graph depend on the location of the data
values in zArray .

• zArray should be a two dimensional array of the following form.

zArray[numberOfYPoints][numberOfXPoints]

• Each element of the array is associated with a pixel on the graph. The pixel associated with
element zArray[y][x] is located at {x, y} on the graph.

colorMapArray contains up to 255 ColorMapEntry structures, which consist of:

union {
char valChar;
int valInt;
short valShort;
float valFloat;
double valDouble;
unsigned char valUChar;
unsigned long valULong;
unsigned short valUShort;

} dataValue;
int color; /* RGB value */

The Color Map array defines how data values in zArray are translated into color values. If a data
value matches exactly to a data value in one of the ColorMapEntry structures, then it is
converted to the corresponding color. Otherwise, the following conditions apply.

• If interpColors is zero, the color associated with the next higher data value is used.

• If interpColors is nonzero, the color is computed using a weighted mean of the colors
associated with the Color Map data values immediately above and below the zArray value.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-166 © National Instruments Corporation

• Regardless of the value of interpColors, the following conditions apply.

– Data values below the lowest Color Map data value are assigned the color of the lowest
Color Map data value.

– Data values above the highest Color Map data value are assigned the value of the
hiColor parameter.

If interpColors is nonzero, the numberOfColors must be greater than or equal to 2.

The colorMap entries do not need to be in sorted order.

interpPixels indicates how pixels between the pixels assigned to the zArray values are colored.
If interpPixels is zero, an unassigned pixel is given the same color as the closest assigned pixel.
If interpPixels is nonzero, an unassigned pixel is first given a data value using a weighted mean
of the data values associated with the four closest assigned pixels. Then the color is calculated
using the colorMap.

Performance Considerations

If interpPixels is zero, the performance degrades as the number of data points in zArray
increases.

If interpPixels is nonzero, the performance degrades as total number of pixels in the plot area
increases.

See Also

PlotScaledIntensity

PlotLine

int plotHandle = PlotLine (int panelHandle, int controlID , double x1, double y1,
double x2, double y2, int color);

Purpose

Plots a line into a graph control.

The starting and ending points of the line are specified in terms of X and Y coordinates of the
graph.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-167 LabWindows/CVI User Interface Reference

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

x1 double-
precision

The horizontal coordinate of the starting point of the line.

y1 double-
precision

The vertical coordinate of the starting point of the line.

x2 double-
precision

The horizontal coordinate of the ending point of the line.

y2 double-
precision

The vertical coordinate of the ending point of the line.

color integer Specifies the color of the curve to be plotted. An RGB
value is a 4-byte integer with the hexadecimal format
0x00RRGGBB. RR, GG, and BB are the respective red,
green, and blue components of the color value. See
Table 3-3 in Chapter 3 for a list of the common colors.

Return Value

plotHandle integer The handle for the plot. This handle can be passed to
DeleteGraphPlot to delete the individual plot. Refer
to Appendix A for error codes. It can also be passed to
SetPlotAttribute and GetPlotAttribute .

PlotOval

int plotHandle = PlotOval (int panelHandle, int controlID , double x1, double y1,
double x2, double y2, int color, int fillColor);

Purpose

Plots a oval into a graph control.

The oval is defined by specifying two opposing corners of a rectangle that enclose the oval in
terms of X and Y coordinates of the graph.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-168 © National Instruments Corporation

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header
file) which was assigned to the control by the User
Interface Editor, or the ID returned by the NewCtrl
or DuplicateCtrl function.

x1 double-
precision

The horizontal coordinate of one corner of the
rectangle that encloses the oval.

y1 double-
precision

The vertical coordinate of one corner of the rectangle
that encloses the oval.

x2 double-
precision

The horizontal coordinate of the opposing corner of
the rectangle that encloses the oval.

y2 double-
precision

The vertical coordinate of the opposing corner of the
rectangle that encloses the oval.

color integer Specifies the color of the curve to be plotted. An
RGB value is a 4-byte integer with the hexadecimal
format 0x00RRGGBB. RR, GG, and BB are the
respective red, green, and blue components of the
color value. See Table 3-3 in Chapter 3 for a list of
the common colors.

fillColor integer Specifies the fill color of the figure.

Return Value

plotHandle integer The handle for the plot. This handle can be passed to
DeleteGraphPlot to delete the individual plot.
Refer to Appendix A for error codes. It can also be
passed to SetPlotAttribute and
GetPlotAttribute .

PlotPoint

int plotHandle = PlotPoint (int panelHandle, int controlID , double xCoordinate,
double yCoordinate, int pointStyle, int color);

Purpose

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-169 LabWindows/CVI User Interface Reference

Plots a point into a graph control.

The position of the point is specified in terms of X and Y coordinates of the graph.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header
file) which was assigned to the control by the User
Interface Editor, or the ID returned by the NewCtrl
or DuplicateCtrl function.

xCoordinate double-
precision

The horizontal position at which to plot the point.

yCoordinate double-
precision

The vertical coordinate at which to plot the point.

pointStyle integer The point style to be used when plotting the array.

color integer Specifies the color of the curve to be plotted. An
RGB value is a 4-byte integer with the hexadecimal
format 0x00RRGGBB. RR, GG, and BB are the
respective red, green, and blue components of the
color value. See Table 3-3 in Chapter 3 for a list of
the common colors.

Return Value

plotHandle integer The handle for the plot. This handle can be passed to
DeleteGraphPlot to delete the individual plot.
Refer to Appendix A for error codes. It can also be
passed to SetPlotAttribute and
GetPlotAttribute .

PlotPolygon

int plotHandle = PlotPolygon (int panelHandle, int controlID , void * xArray ,
void * yArray , int pointsInPolygon, int xDataType,
int yDataType, int color, int fillColor);

Purpose

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-170 © National Instruments Corporation

Plots a polygon into a graph control.

The polygon is defined by a set of connected X-Y points. The last point is automatically
connected to the first point to close the polygon.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

xArray void * The array that contains the values to be plotted along the
X axis. The data type must be of the type specified by
xDataType.

yArray void * The array that contains the values to be plotted along the
Y axis. The data type must be of the type specified by
yDataType.

pointsInPolygon integer The number of connected points (corners) in the polygon.
There must be at least three corners. pointsInPolygon
controls the number of corners plotted, even if the
number of elements in the X and Y Arrays are greater
than the value of pointsInPolygon.

xDataType integer Specifies the data type of the X array. See Table 3-11 in
Chapter 3 for a list of data types.

yDataType integer Specifies the data type of the Y array. See Table 3-11 in
Chapter 3 for a list of data types.

color integer Specifies the color of the curve to be plotted. An RGB
value is a 4-byte integer with the hexadecimal format
0x00RRGGBB. RR, GG, and BB are the respective red,
green, and blue components of the color value. See
Table 3-3 in Chapter 3 for a list of the common colors.

fillColor integer Specifies the fill color of the figure.

Return Value

plotHandle integer The handle for the plot. This handle can be passed to
DeleteGraphPlot to delete the individual plot. Refer
to Appendix A for error codes. It can also be passed to
SetPlotAttribute and GetPlotAttribute

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-171 LabWindows/CVI User Interface Reference

PlotRectangle

int plotHandle = PlotRectangle (int panelHandle, int controlID , double x1, double y1,
double x2, double y2, int color, int fillColor);

Purpose

Plots a rectangle into a graph control.

Two opposing corners of the rectangle are specified in terms of X and Y coordinates of the
graph.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header
file) which was assigned to the control by the User
Interface Editor, or the ID returned by the NewCtrl
or DuplicateCtrl function.

x1 double-
precision

The horizontal coordinate of one corner of the
rectangle.

y1 double-
precision

The vertical coordinate of one corner of the rectangle

x2 double-
precision

The horizontal coordinate of the opposing corner of
the rectangle.

y2 double-
precision

The vertical coordinate of the opposing corner of the
rectangle.

color integer Specifies the color of the curve to be plotted. An
RGB value is a 4-byte integer with the hexadecimal
format 0x00RRGGBB. RR, GG, and BB are the
respective red, green, and blue components of the
color value. See Table 3-3 in Chapter 3 for a list of
the common colors.

fillColor integer Specifies the fill color of the figure.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-172 © National Instruments Corporation

Return Value

plotHandle integer The handle for the plot. This handle can be passed to
DeleteGraphPlot to delete the individual plot.
Refer to Appendix A for error codes. It can also be
passed to SetPlotAttribute and
GetPlotAttribute .

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-173 LabWindows/CVI User Interface Reference

PlotScaledIntensity

int status = PlotScaledIntensity (int panelHandle, int controlID , void * zArray ,
int numberOfXPoints, int numberOfYPoints,
int zDataType, double yGain, double yOffset,
double xGain, double xOffset,
ColorMapEntry colorMapArray [] , int hiColor ,
int numberofColors, int interpColors,
int interpPixels);

Purpose

This function draws a solid rectangular plot in a graph control. It is the same as
PlotIntensity , except that you can apply scaling factors and offsets to the data values.

The plot consists of pixels whose colors correspond to the magnitude of data values in a two-
dimensional array and whose coordinates correspond to the locations of the same data values in
the array, scaled by xGain and yGain and offset by xOffset and yOffset. For instance the pixel
associated with zArray [2][3] is located at the following coordinates.

{x = 3*xGain + xOffset, y = 2*yGain + yOffset}.

The lower left corner of the plot area is located at

{ xOffset, yOffset}.

The upper right corner of the plot area is located at

{(X-1)* xGain + xOffset, (Y-1)*yGain + yOffset},

where

X = Number of X Points
Y = Number of Y Points

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-174 © National Instruments Corporation

Parameters

Input panelHandle integer The specifier for a particular panel that is contained
in memory. This handle will have been returned by
the LoadPanel , NewPanel , or
DuplicatePanel function.

controlID integer The defined constant (located in the .uir header
file) which was assigned to the control in the User
Interface Editor, or the ID returned by the NewCtrl
or DuplicateCtrl function.

zArray numeric
array

An array that contains the data values that are to be
converted to colors.

numberOfXPoints integer The number of points to be displayed along the x-
axis in each row.

numberOfYPoints integer The number of points to be displayed along the y-
axis in each column.

zDataType integer Specifies the data type of the elements in zArray , as
well as the data type of the Color Map values.

yGain double-
precision

Specifies the scaling factor to be applied to the
vertical locations implied by zArray vertical index
values.

yOffset double-
precision

Specifies the offset to be added to the vertical
locations implied by zArray vertical index values.

xGain double-
precision

Specifies the scaling factor to be applied to the
horizontal locations implied by zArray horizontal
index values.

xOffset double-
precision

Specifies the offset to be added to the horizontal
locations implied by zArray horizontal index values.

colorMapArray ColorMap
Entry

An array of ColorMapEntry structures which
specifies how the data values in zArray are
translated. The maximum number of entries is 255.

hiColor integer The RGB value to which all zArray values that are
higher than the highest data value in colorMapArray
are translated.

numberOfColors integer The number of entries in colorMapArray . Must be
less than or equal to 255.

interpColors integer Indicates how to assign colors to zArray data values
that do not exactly match the data values in the
colorMapArray .

interpPixels integer Indicates how pixels between the pixels assigned to
the zArray values are colored.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-175 LabWindows/CVI User Interface Reference

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

zArray must be one of the following data types (specified in zDataType).

VAL_DOUBLE
VAL_FLOAT
VAL_INTEGER
VAL_SHORT_INTEGER
VAL_CHAR
VAL_UNSIGNED_INTEGER
VAL_UNSIGNED_SHORT_INTEGER
VAL_UNSIGNED_CHAR

The locations at which the colors are shown on the graph depend on that location of the data
values in zArray .

• zArray should be a two-dimensional array of the following form.

zArray[numberOfYPoints][numberOfXPoints]

• Each element of the array is associated with a pixel on the graph. The pixel associated with
element zArray [y][x] is located at {x * xGain + xOffset, y * yGain + yOffset} on the
graph.

colorMapArray contains up to 255 ColorMapEntry structures, which consist of:

union {
char valChar;
int valInt;
short valShort;
float valFloat;
double valDouble;
unsigned char valUChar;
unsigned long valULong;
unsigned short valUShort;

} data Value;
int color; /* RGB value */

The Color Map array defines how data values in zArray are translated into color values. If a data
value matches exactly to a data value in one of the ColorMapEntry structures, then it is
converted to the corresponding color. Otherwise, the following conditions apply.

• If interpColors is zero, the color associated with the next higher data value is used.

• If interpColors is nonzero, the color is computed using a weighted mean of the colors
associated with the Color Map data values immediately above and below the zArray value.

• Regardless of the value of interpColors, the following conditions apply.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-176 © National Instruments Corporation

– Data below the lowest Color Map data value are assigned the color of the lowest Color
Map data value.

– Data values above the highest Color Map data value are assigned the value of the
hiColor parameter.

If interpColors is nonzero, the numberOfColors must be greater than or equal to 2.

The colorMapArray entries do not need to be in sorted order.

interpPixels indicates how pixels between the pixels assigned to the zArray values are colored.
If interpPixels is zero, an unassigned pixel is given the same color as the closest assigned pixel.
If interpPixels is nonzero, an unassigned pixel is first given a data value using a weighted mean
of the data values associated with the four closest assigned pixels. Then the color is calculated
using the Color Map.

Performance Considerations

If interpPixels is zero, the performance depends on the number of data points in zArray .

If interpPixels is nonzero, the performance depends on the total number of pixels in the plot
area.

PlotStripChart

int status = PlotStripChart (int panelHandle, int controlID , void * yArray ,
int numberofPoints, int startingIndex, int skipCount,
int yDataType);

Purpose

Adds one or more points to each trace in a strip chart control.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-177 LabWindows/CVI User Interface Reference

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

yArray void * The array that contains the values to be plotted along
the Y axis. The data type must be of the type specified
by yDataType.

numberofPoints integer The number of yArray points to add to the strip chart.
This value must be an even multiple of the number
traces in the strip chart. This value controls the number
of points to plot even if the number of elements in
yArray is greater than the numberofPoints.

startingIndex integer The index of the element in the yArray where the first
block of data begins. This value is zero-based and must
be an even multiple of the number of traces in the strip
chart. The default value is 0.

skipCount integer The number of yArray elements to skip over
(increment) after each set of points is plotted. The
default is 0.

yDataType integer Specifies the data type of the yArray . See Table 3-11 in
Chapter 3 for a list of data types.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

numberofPoints

The right edge of the strip chart is considered a grid line. The Points per Screen attribute of the
strip chart encompasses this grid line at the right edge of the strip chart. To synchronize your
data with the grid lines, you should set the strip chart Points per Screen attribute to one greater
than the datapoints per screen, in other words,

strip chart Points per Screen = datapoints per screen + 1.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-178 © National Instruments Corporation

You can set the Points per Screen attribute of the strip chart in the User Interface Editor or you
can use SetCtrlAttribute function with the ATTR_POINTS_PER_SCREEN attribute.

The datapoints per screen is controlled by the numberofPoints parameter of
PlotStripChart .

For Continuous mode strip charts, if you do not follow this algorithm, you will notice the grid
lines drifting away from your datapoints.

For Sweep & Block mode, if you do not follow this algorithm, you will notice gaps on the right
side of the strip chart, as described in the following example.

If you set Points per Screen to 100 points, the first call to PlotStripChart (with 100 points)
plots from 0 to 99. The second call to PlotStripChart plots from 99 to 198 and then plots
the last point (199) at the left edge of the strip chart. If the second PlotStripChart starts at
100—as you might expect—the information between 99 and 100 never appears on the screen.

To make all data appear on the screen, set your strip chart Points per Screen to 101 points.

skipCount

Suppose you have an array that contains 4 data sets (A,B,C,D) and you want to plot each A-B
pair into a strip chart control. If the elements are ordered in the following manner,

A B C D A B C D A B C D

then entering a skipCount of 2 will cause each C-D pair to be skipped before the next A-B pair
is plotted.

PlotStripChartPoint

int status = PlotStripChartPoint (int panelHandle, int controlID , double y);

Purpose

This function provides a simple interface for adding one point to a strip chart that contains only
one trace. The same operation can be performed using PlotStripChart .

Refer to the help text for the PlotStripChart function if you need more information about
strip chart plots.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-179 LabWindows/CVI User Interface Reference

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User
Interface Editor, or the ID returned by the NewCtrl
or DuplicateCtrl function.

y double-
precision

The data value to be plotted along the y-axis.

Return Value

status integer Refer to Appendix A for error codes.

PlotText

int plotHandle = PlotText (int panelHandle, int controlID , double xCoordinate,
double yCoordinate, char text[] , int font, int textColor,
int backgroundColor);

Purpose

Plots a text string into a graph control.

The origin of the text is the lower left corner of the string.

The origin of the text is specified in terms of the X and Y coordinates of the graph. If the graph
attribute ATTR_SHIFT_TEXT_PLOTS is non-zero and the text origin is within the graph area,
the text shifts to the left and/or down until it is completely visible. If
ATTR_SHIFT_TEXT_PLOTS is zero, the text does not shift.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-180 © National Instruments Corporation

Parameters

Input panelHandle integer The specifier for a particular panel that is currently
in memory. This handle will have been returned by
the LoadPanel , NewPanel , or
DuplicatePanel function.

controlID integer The defined constant (located in the .uir header
file) which was assigned to the control by the User
Interface Editor, or the ID returned by the NewCtrl
or DuplicateCtrl function.

xCoordinate double-
precision

The horizontal position at which to place the left
edge of the text within the graph.

yCoordinate double-
precision

The vertical position at which to place the bottom
edge of the text within the graph.

text string The string to be plotted.

font integer Selects the text font. See Table 3-5 in Chapter 3 for
valid fonts.

textColor integer Specifies the color of the plotted text. Table 3-3 in
Chapter 3 presents a list of the common colors.

backgroundColor integer Specifies the background color of the plotted text.
Table 3-3 in Chapter 3 presents a list of the common
colors.

Return Value

plotHandle integer The handle for the plot. This handle can be passed to
DeleteGraphPlot to delete the individual plot.
Refer to Appendix A for error codes. It can also be
passed to SetPlotAttribute and
GetPlotAttribute .

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-181 LabWindows/CVI User Interface Reference

PlotWaveform

int plotHandle = PlotWaveform (int panelHandle, int controlID , void * yArray ,
int numberofPoints, int yDataType, double yGain,
double yOffset, double initialX , double xIncrement,
int plotStyle, int pointStyle, int lineStyle,
int pointFrequency, int color);

Purpose

Plots a waveform into a graph control.

The values in Y Array are scaled according to Y Gain and Y Offset. The X axis timebase is
scaled according to Initial X and X Increment. Each point in the plot is computed as follows:

xi = (i * XInc) + InitX

yi = (wfmi * YGain) + YOff

where i is the index of the point in the waveform array.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header
file) which was assigned to the control by the User
Interface Editor, or the ID returned by the NewCtrl
or DuplicateCtrl function.

yArray void * The array that contains the values to be plotted along
the Y axis. The data type must be of the type
specified by yDataType.

numberofPoints integer The number of points to be plotted.

yDataType integer Specifies the data type of yArray . See Table 3-11 in
Chapter 3 for a list of data types.

yGain double-
precision

Specifies the gain to be applied to the waveform
(yArray) data.

(continues)

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-182 © National Instruments Corporation

Parameters (Continued)

yOffset double-
precision

Specifies a constant offset to be added to the
waveform (yArray) data. The default value is 0.0

initialX double-
precision

Specifies the initial value for the X axis.

xIncrement double-
precision

Specifies the increment along the X axis for each new
point.

plotStyle integer The curve style to be used when plotting the data
points. See Table 3-24 in Chapter 3 for a list of plot
styles.

pointStyle integer The point style to be used when plotting the array.
The point style determines the type of marker drawn
when the plot style is VAL_CONNECTED_POINTS
or VAL_SCATTER. See Table 3-22 in Chapter 3 for a
list of point styles.

lineStyle integer This control selects the line style. See Table 3-23 in
Chapter 3 for a list of line styles.

pointFrequency integer Specifies the point interval at which marker symbols
are drawn when the curve style is
VAL_CONNECTED_POINTS or VAL_SCATTER.

color integer Specifies the color of the curve to be plotted. An
RGB value is a 4-byte integer with the hexadecimal
format 0x00RRGGBB. RR, GG, and BB are the
respective red, green, and blue components of the
color value. See Table 3-3 in Chapter 3 for a list of
the common colors.

Return Value

plotHandle integer The handle for the plot. This handle can be passed to
DeleteGraphPlot to delete the individual plot.
Refer to Appendix A for error codes. It can also be
passed to SetPlotAttribute and
GetPlotAttribute .

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-183 LabWindows/CVI User Interface Reference

PlotX

int plotHandle = PlotX (int panelHandle, int controlID , void * xArray ,
int numberofPoints, int xDataType, int plotStyle,
int pointStyle, int lineStyle, int pointFrequency, int color);

Purpose

Plots an array of X values against its indices along the Y axis. The plot is displayed in a graph
control on the specified panel.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in memory.
This handle will have been returned by the LoadPanel ,
NewPanel , or DuplicatePanel function.

controlID integer The defined constant (located in the .uir header file) which
was assigned to the control by the User Interface Editor, or the
ID returned by the NewCtrl or DuplicateCtrl function.

xArray void * The array that contains the values to be plotted along the X axis.
The data type must be of the type specified by xDataType.

numberofPoints integer The number of points to plot. This value controls the number of
points to plot even if the number of elements in xArray is
greater than the numberofPoints.

xDataType integer Specifies the data type of the xArray . See Table 3-11 in Chapter
3 for a list of data types.

plotStyle integer The curve style to be used when plotting the data points. See
Table 3-24 in Chapter 3 for a list of plot styles.

pointStyle integer The point style to be used when plotting the array. The point
style determines the type of marker drawn when the plot style is
VAL_CONNECTED_POINTS or VAL_SCATTER. See Table
3-22 in Chapter 3 for a list of point styles.

lineStyle integer This control selects the line style. See Table 3-23 in Chapter 3
for a list of line styles.

pointFrequency integer Specifies the point interval at which marker symbols are drawn
when the curve style is VAL_CONNECTED_POINTS or
VAL_SCATTER.

color integer Specifies the color of the curve to be plotted. An RGB value is
a 4-byte integer with the hexadecimal format 0x00RRGGBB.
RR, GG, and BB are the respective red, green, and blue
components of the color value. See Table 3-3 in Chapter 3 for a
list of the common colors.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-184 © National Instruments Corporation

Return Value

plotHandle integer The handle for the plot. This handle can be passed to
DeleteGraphPlot to delete the individual plot. Refer to
Appendix A for error codes. It can also be passed to
SetPlotAttribute and GetPlotAttribute .

PlotXY

int plotHandle = PlotXY (int panelHandle, int controlID , void * xArray ,
void * yArray , int numberofPoints, int xDataType,
int yDataType, int plotStyle, int pointStyle, int lineStyle,
int pointFrequency, int color);

Purpose

Plots an array of X values against an array of Y values.

The plot is displayed in a graph control on the specified panel.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

xArray void * The array that contains the values to be plotted along
the X axis. The data type must be of the type specified
by xDataType.

yArray void * The array that contains the values to be plotted along
the Y axis. The data type must be of the type specified
by yDataType.

numberofPoints integer The number of points to plot. This value controls the
number of points to plot even if the number of elements
in X Array is greater than the numberofPoints.

(continues
)

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-185 LabWindows/CVI User Interface Reference

Parameters (Continued)

xDataType integer Specifies the data type of the xArray . See Table 3-11 in
Chapter 3 for a list of data types.

yDataType integer Specifies the data type of the yArray . See Table 3-11 in
Chapter 3 for a list of data types.

plotStyle integer The curve style to be used when plotting the data
points. See Table 3-24 in Chapter 3 for a list of plot
styles.

pointStyle integer The point style to be used when plotting the array. The
point style determines the type of marker drawn when
the plot style is VAL_CONNECTED_POINTS or
VAL_SCATTER. See Table 3-22 in Chapter 3 for a list
of point styles.

lineStyle integer This control selects the line style. See Table 3-23 in
Chapter 3 for a list of line styles.

pointFrequency integer Specifies the point interval at which marker symbols
are drawn when the curve style is
VAL_CONNECTED_POINTS or VAL_SCATTER

color integer Specifies the color of the curve to be plotted. An RGB
value is a 4-byte integer with the hexadecimal format
0x00RRGGBB. RR, GG, and BB are the respective
red, green, and blue components of the color value. See
Table 3-3 in Chapter 3 for a list of the common colors.

Return Value

plotHandle integer The handle for the plot. This handle can be passed to
DeleteGraphPlot to delete the individual plot.
Refer to Appendix A for error codes. It can also be
passed to SetPlotAttribute and
GetPlotAttribute .

PlotY

int plotHandle = PlotY (int panelHandle, int controlID , void * yArray ,
int numberofPoints, int yDataType, int plotStyle,
int pointStyle, int lineStyle, int pointFrequency, int color);

Purpose

Plots an array of Y values against its indices along the X axis. The plot is displayed in a graph
control on the specified panel.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-186 © National Instruments Corporation

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

yArray void * The array that contains the values to be plotted along
the Y axis. The data type must be of the type specified
by yDataType.

numberofPoints integer The number of points to plot. This value controls the
number of points to plot even if the number of elements
in xArray is greater than the numberofPoints.

yDataType integer Specifies the data type of the yArray . See Table 3-11 in
Chapter 3 for a list of data types.

plotStyle integer The curve style to be used when plotting the data
points. See Table 3-24 in Chapter 3 for a list of plot
styles.

pointStyle integer The point style to be used when plotting the array. The
point style determines the type of marker drawn when
the plot style is VAL_CONNECTED_POINTS or
VAL_SCATTER. See Table 3-22 in Chapter 3 for a list
of point styles.

lineStyle integer This control selects the line style. See Table 3-23 in
Chapter 3 for a list of line styles.

pointFrequency integer Specifies the point interval at which marker symbols
are drawn when the curve style is
VAL_CONNECTED_POINTS or VAL_SCATTER.

color integer Specifies the color of the curve to be plotted. An RGB
value is a 4-byte integer with the hexadecimal format
0x00RRGGBB. RR, GG, and BB are the respective
red, green, and blue components of the color value. See
Table 3-3 in Chapter 3 for a list of the common colors.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-187 LabWindows/CVI User Interface Reference

Return Value

plotHandle integer The handle for the plot. This handle can be passed to
DeleteGraphPlot to delete the individual plot.
Refer to Appendix A for error codes. It can also be
passed to SetPlotAttribute and
GetPlotAttribute .

PointEqual

int pointsAreEqual = PointEqual (Point point1, Point point2);

Purpose

Indicates if two points are the same.

Returns 1 if the x and y values of two specified points are the same. Returns 0 otherwise.

Parameters

Input point1 Point A point structure.

point2 Point A point structure.

Return Value

pointsAreEqual integer An indication of the two points are the same.

Return Codes

1 The x and y coordinates in the two Point structures are the same.

0 The x and y coordinates in the two Point structures are not the same.

See Also

MakePoint

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-188 © National Instruments Corporation

PointPinnedToRect

void PointPinnedToRect (Point point, Rect rect, Point * pinnedPoint);

Purpose

This function ensures that a point is within a specified rectangular area. If the point is already
enclosed by the rectangle, the location of the point remains unchanged. If the point is outside the
rectangle, its location is set to the nearest point on the edge of the rectangle.

The Point structure containing the original location is not modified. The calculated location is
stored in another Point structure.

Parameters

Input point Point A Point structure specifying the original location of the
point.

rect Rect A Rect structure specifying the rectangle to which the
point is to be pinned.

Output pinnedPoint Point The Point structure in which the calculated location is
stored.

Return Value

None

See Also

MakePoint, MakeRect.

PointSet

void PointSet (Point * point, int xCoordinate, int yCoordinate);

Purpose

Sets the values in an existing Point structure. The Point structure defines the location of a
point.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-189 LabWindows/CVI User Interface Reference

Parameters

Input xCoordinate integer The new horizontal location of the point.

yCoordinate integer The new vertical location of the point.

Output point Point The Point structure in which the new values are set.

Return Value

None

See Also

MakePoint

PostDeferredCall

int status = PostDeferredCall (DeferredCallbackPtr deferredFunction,
void * callbackData);

Purpose

Posts a function to LabWindows/CVI that is to be called at the next occurrence of
GetUserEvent , RunUserInterface , or ProcessSystemEvents .

PostDeferredCall would typically be used in a function installed as an asynchronous
interrupt handler. The asynchronous interrupt handler is limited in what it can do. It cannot do
anything time consuming and it cannot call into the User Interface Library. The function that is
posted by PostDeferredCall contains the code that cannot be executed at interrupt time.

This is useful when external devices generate interrupts during source program execution.

Parameters

Input deferredFunction DeferredCallbackPtr A pointer to the function whose execution
will be deferred until the next
GetUserEvent ,
RunUserInterface , or
ProcessSystemEvents.

callbackData void * A pointer to user-defined data passed to
the deferred function.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-190 © National Instruments Corporation

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

The function pointed to by deferredFunction takes the following form:

void CVICALLBACK DeferredCallbackFunction (void * callbackData);

PrintCtrl

int printStatus = PrintCtrl (int panelHandle, int controlID , char fileName[] ,
int scaling, int confirmDialogBox);

Purpose

Prints the selected control.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

fileName string The name of the output file. If the name is non-empty,
the output will be redirected to the file. If the name is
not a complete pathname, the file will be created
relative to the current working directory.

scaling integer Selects the scaling mode for printing. 1 expands the
object to full size. 0 (zero) prints the object at the same
relative location and size as displayed on the screen.

confirmDialogBox integer Displays a dialog box before printing to confirm print
attributes. Requested and supported attribute values are
shown for the current printer, allowing the user to
change attribute values during run-time.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-191 LabWindows/CVI User Interface Reference

Return Value

printStatus integer Returns the status of the print operation. Refer to
Appendix A for error codes.

Return Codes

The value returned by the PrintCtrl function is a bit-field.

VAL_TOO_MANY_COPIES (1<<0)
VAL_NO_MULTIPLE_COPIES (1<<1)
VAL_NO_DUPLEX (1<<2)
VAL_NO_LANDSCAPE (1<<3)
VAL_CANT_FORCE_MONO (1<<4)
VAL_NO_SUCH_XRESOLUTION (1<<5)
VAL_NO_MULTIPLE_XRESOLUTIONS (1<<6)
VAL_NO_SUCH_YRESOLUTION (1<<7)
VAL_NO_MULTIPLE_YRESOLUTIONS (1<<8)
VAL_NO_SEPARATE_YRESOLUTION (1<<9)
VAL_USER_CANCEL (1<<10)

PrintPanel

int printStatus = PrintPanel (int panelHandle, char fileName[] , int scaling,
int scope, int confirmDialogBox);

Purpose

Prints the selected panel.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-192 © National Instruments Corporation

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

fileName string The name of the output file. If the name is
non-empty, the output will be redirected to the file. If
the name is not a complete pathname, the file will be
created relative to the current working directory.

scaling integer Selects the scaling mode for printing. 1 expands the
object to the size of an entire page. 0 (zero) prints the
object at the same relative location and size as
displayed on the screen.

scope integer Selects the portion of the specified panel to be
printed. VAL_VISIBLE_AREA or
VAL_FULL_PANEL.

confirmDialogBox integer Displays a dialog box before printing to confirm print
attributes. Requested and supported attribute values
are shown for the current printer, allowing the user to
change attribute values during run-time.

Return Value

printStatus integer Returns the status of the print operation. Refer to
Appendix A for error codes.

Return Codes

The value returned by the PrintPanel function is a bit-field.

VAL_TOO_MANY_COPIES (1<<0)
VAL_NO_MULTIPLE_COPIES (1<<1)
VAL_NO_DUPLEX (1<<2)
VAL_NO_LANDSCAPE (1<<3)
VAL_CANT_FORCE_MONO (1<<4)
VAL_NO_SUCH_XRESOLUTION (1<<5)
VAL_NO_MULTIPLE_XRESOLUTIONS (1<<6)
VAL_NO_SUCH_YRESOLUTION (1<<7)
VAL_NO_MULTIPLE_YRESOLUTIONS (1<<8)
VAL_NO_SEPARATE_YRESOLUTION (1<<9)
VAL_USER_CANCEL (1<<10)

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-193 LabWindows/CVI User Interface Reference

Parameter Discussion

If VAL_VISIBLE_AREA is the scope, only that portion of the panel visible on the screen is
printed. Menu bars, scroll bars, and a frame are printed along with the visible portion. If
VAL_FULL_PANEL is the scope, the entire panel is printed. No menu bars, scroll bars, or
frames are printed. Regardless of the scope, objects within child panels will be clipped to the
frame of the child panel.

Note: By default PrintPanel uses the following settings:
• ATTR_PAPER_WIDTH is set to VAL_USE_PRINTER_DEFAULT
• ATTR_PAPER_HEIGHT is set to VAL_INTEGRAL_SCALE.
If the printout does not fit on the page, call SetPrintAttribute before
PrintPanel which changes the settings as follows:
• ATTR_PAPER_WIDTH is set to VAL_INTEGRAL_SCALE
• ATTR_PAPER_HEIGHT is set to VAL_USE_PRINTER_DEFAULT.

PrintTextBuffer

int status = PrintTextBuffer (char buffer [] , char outputFile[]);

Purpose

Prints the contents of a text buffer. You may direct the output to the printer or to a file.

Newline/carriage-return characters are honored.

Tabs are expanded according to the current state of the ATTR_TAB_INTERVAL attribute. This
attribute can be modified using the SetPrintAttribute function. The default tab interval
is 4.

Text that extends beyond the end of the paper can be truncated or wrapped, depending on the
state of the ATTR_TEXT_WRAP attribute. This attribute can be modified using the
SetPrintAttribute function. The default is 'wrap'.

Parameters

Input buffer string The text to be printed. Must be terminated by an
ASCII NUL byte.

outputFile string The name of a file to which to direct the output. If
"" , the output is directed to the printer.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-194 © National Instruments Corporation

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

If outputFile is a not a complete pathname, it is created relative to the current working directory

See Also

PrintTextFile.

PrintTextFile

int status = PrintTextFile (char fileName[] , char outputFile[]);

Purpose

Prints a text file. You can direct the output to the printer or to a file.

Newline/carriage-return characters are honored.

Tabs are expanded according to the current state of the ATTR_TAB_INTERVAL attribute. This
attribute can be modified using the SetPrintAttribute function. The default tab interval
is 4.

Text that extends beyond the end of the paper can be truncated or wrapped, depending on the
state of the ATTR_TEXT_WRAP attribute. This attribute can be modified using the
SetPrintAttribute function. The default setting is 'wrap'.

Parameters

Input fileName string The name of the file to print.

outputFile string The name of a file to which to direct the output. If
"", the output is directed to the printer.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

fileName may be a complete pathname or a simple filename. If the name is a simple filename (in
other words, contains no directory path), then the following conditions apply.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-195 LabWindows/CVI User Interface Reference

• If the file is listed in the project, the file is located using the pathname from the project.

• Otherwise, the file is located in the directory containing the project.

If outputFile is a not a complete pathname, it is created relative to the current working directory

See Also

PrintTextBuffer.

ProcessDrawEvents

int status = ProcessDrawEvents(void);

Purpose

While inside of a callback function or in code that does not call RunUserInterface or
GetUserEvent , the user interface is not updated. If a particular function is overly
time-consuming, it essentially “locks out” user interface updates. To force these updates to be
processed, call ProcessDrawEvents when you want the user interface to be updated.

Note: The user interface is updated automatically by the GetUserEvent function and
when a callback returns.

Return Value

status integer Refer to Appendix A for error codes.

ProcessSystemEvents

int status = ProcessSystemEvents (void);

Purpose

While inside of a callback function or in code that does not call RunUserInterface or
GetUserEvent , user interface and system events are not processed. If a particular function is
overly time-consuming, it will essentially “lock out” user interface and system events. To force
these events to be processed, call ProcessSystemEvents occasionally in the code that is
locking out system events. Care must be taken when using this function, because it can allow
other callback functions to be executed before ProcessSystemEvents completes.

This function processes all pending system events. These include:

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-196 © National Instruments Corporation

• System events that have been delayed or suspended by a user application. For example:
keystrokes, mouse events, and screen updates.

• Events generated by other applications. For example: Windows messages intended to invoke
a callback installed with RegisterWinMsgCallback .

Note: This function is called automatically by the GetUserEvent function and after a
callback returns.

PromptPopup

int status = PromptPopup (char title [] , char message[] , char responseBuffer[]
int maxResponseLength);

Purpose

Displays a prompt message in a dialog box and waits for the user to type a reply.

Parameters

Input title string The title to be displayed on the dialog box.

message string The message to be displayed on the dialog box.
The \n character can be used to create
multi-line messages.

maxResponseLength integer The maximum number of bytes the user is
allowed to enter. The responseBuffer must be
large enough to contain all of the user’s input
plus one ASCII NULL byte.

Output responseBuffer string The buffer in which the user’s response is
stored. The buffer must be large enough to hold
maxResponseLength bytes plus one ASCII
NULL byte.

Return Value

status integer Refer to Appendix A for error codes.

QueueUserEvent

int status = QueueUserEvent (int eventNumber, int panelHandle, int controlID);

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-197 LabWindows/CVI User Interface Reference

Purpose

QueueUserEvent is used to place a programmer-defined event in the GetUserEvent
queue.

Event numbers 1000 to 10000 are reserved for programmer-defined events.
Programmer-defined events are returned by GetUserEvent .

Parameters

Input eventNumber integer Is an integer value between 1000 and 10000 placed in
the event queue which can later be processed by
GetUserEvent

panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function. Pass 0 (zero) when the event doesn’t apply to
a particular panel.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function. Pass 0 (zero) when the
event doesn’t apply to a particular control.

Return Value

status integer Refer to Appendix A for error codes.

QuitUserInterface

int status = QuitUserInterface (int returnCode);

Purpose

QuitUserInterface should be called only from within a callback function invoked during
execution of RunUserInterface . It causes RunUserInterface to return.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-198 © National Instruments Corporation

The value returned by RunUserInterface is the value that was passed to
QuitUserInterface .

Parameters

Input returnCode integer The value that will be returned from the call to
RunUserInterface that is being terminated. This
parameter can be used as a flag to pass information
back through the RunUserInterface function. The
value should be greater than or equal to zero.

Return Value

status integer Refer to Appendix A for error codes.

RecallPanelState

int status = RecallPanelState (int panelHandle, char filename[] , int stateIndex);

Purpose

Reads a panel state from a file created with the SavePanelState function. If the panel is
currently visible, all controls are updated to reflect their new states.

Note: If the panel has been modified in the User Interface Editor or programmatically since
the panel state was saved, recalling the panel state may fail or may result in a modified
panel state.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

filename string The name of the file in which the panel state was saved.
If the name is a simple filename (in other words,
contains no directory path), then the file is loaded from
the directory containing the project.

stateIndex integer The same state index assigned to the panel state when it
was saved using SavePanelState.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-199 LabWindows/CVI User Interface Reference

Return Value

status integer Refer to Appendix A for error codes.

RectBottom

int bottom = RectBottom (Rect rect);

Purpose

Returns the y coordinate of the bottom edge a rectangle. The bottom edge is not enclosed by the
rectangle. It is computed as follows.

bottom = rect.top + rect.height

Parameter

Input rect Rect Specifies the location and size of a rectangle.

Return Value

bottom integer The y coordinate of the bottom of the rectangle. The bottom
is not enclosed by the rectangle, and is equal to rect.top +
rect.height.

See Also

RectRight

RectCenter

void RectCenter (Rect rect, Point * center);

Purpose

Calculates the location of the center point of the specified rectangle. For even heights (or
widths), the center point is rounded towards the top (or left).

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-200 © National Instruments Corporation

Parameters

Input rect Rect Specifies the location and size of a rectangle.

Output center Point Specifies the location of the center of the rectangle.

Return Value

None

RectContainsPoint

int containsPoint = RectContainsPoint (Rect rect, Point point);

Purpose

Returns 1 if the specified rectangle encloses the specified point. Returns 0 otherwise. The
rectangle is considered to enclose the point if the point is in the interior of the rectangle or on its
frame.

Parameters

Input rect Rect Specifies the location and size of a rectangle.

Output point Point Specifies the location of the center of the rectangle.

Return Value

containsPoint integer Indicates if rect contains point.

Return Codes

1 point is in the interior or on the frame of the rectangle specified by rect.

0 point is outside the frame of the rectangle specified by rect.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-201 LabWindows/CVI User Interface Reference

RectContainsRect

int containsRect = RectContainsRect (Rect rect1, Rect rect2);

Purpose

Returns 1 if the first rectangle encloses the second rectangle. Returns 0 otherwise. A rectangle is
considered to enclose another rectangle if every point of the second rectangle is in the interior or
on the frame of the first rectangle. (A rectangle encloses itself.)

Parameters

Input rect1 Rect Specifies the location and size of a rectangle.

rect2 Rect Specifies the location and size of a rectangle.

Return Value

containsRect integer Indicates if rect1 encloses rect2.

Return Codes

1 rect1 encloses rect2.

0 rect1 does not enclose rect2.

RectEmpty

int isEmpty = RectEmpty (Rect rect);

Purpose

Returns 1 if the specified rectangle is empty. Returns 0 otherwise. A rectangle is considered to
be empty if either its height or width is less than or equal to zero.

Parameter

Input rect Rect Specifies the location and size of a rectangle. A Rect
structure.

Return Value

isEmpty integer Indicates if the rectangle specified by rect is empty.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-202 © National Instruments Corporation

Return Codes

1 Either rect.height or rect.width of is less than or equal to zero.

0 Both rect.height and rect.width are greater than zero.

RectEqual

int areEqual = RectEqual (Rect rect1, Rect rect2);

Purpose

Returns 1 if the location and size of the two specified rectangles are identical. Returns 0
otherwise.

Parameters

Input rect1 Rect Specifies the location and size of a rectangle.

rect2 Rect Specifies the location and size of a rectangle.

Return Value

areEqual integer Indicates if the top, left, height, and width values in rect1 are
identical to those of rect2.

Return Codes

1 rect1 and rect2 have the identical top, left, height, and width values.

0 rect1 and rect2 do not have the identical top, left, height, and width values.

RectGrow

void RectGrow (Rect * rect, int dx, int dy);

Purpose

Modifies the values in a Rect structure so that the rectangle it defines grows or shrinks around
its current center point.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-203 LabWindows/CVI User Interface Reference

Parameters

Input/Output rect Rect On input, specifies the size and location of a rectangle.
On output, specifies a rectangle of a different size but the
same center point.

Input dx integer The amount to grow the rectangle horizontally. Use a
negative value to shrink the rectangle horizontally.

dy integer The amount to grow the rectangle vertically. Use a
negative value to shrink the rectangle vertically.

Return Value

None

RectIntersection

int rectsIntersect = RectIntersection (Rect rect1, Rect rect2, Rect * intersectionRect);

Purpose

Returns an indication of whether two rectangles are intersecting. If they are, the function fills in
a Rect structure describing the intersection area.

Parameters

Input rect1 Rect Specifies the location and size of a rectangle.

rect2 Rect Specifies the location and size of a rectangle.

Output intersectionRect Rect The Rect structure set to the largest rectangle
enclosed by both rect1 and rect2. If rect1 and rect2
do not intersect, this parameter is set to an empty
rectangle (height and width of zero). You may pass 0
for this parameter.

Return Value

rectsIntersect integer Indicates if rect1 and rect2 intersect (have any points
in common).

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-204 © National Instruments Corporation

Return Codes

1 rect1 and rect2 intersect.

0 rect1 and rect2 do not intersect.

RectMove

void RectMove (Rect * rect, Point point);

Purpose

Modifies a Rect structure so that the top, left corner of the rectangle it defines is at the specified
point.

Parameters

Input/Output rect Rect On input, specifies the size and location of a rectangle.
On output, specifies a rectangle of the same size but a
different location.

Input point Point A Point structure specifying the new location of the top,
left corner of the rectangle.

Return Value

None

RectOffset

void RectOffset (Rect * rect, int dx, int dy);

Purpose

Modifies the values in a Rect structure to shift the location of the rectangle it defines.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-205 LabWindows/CVI User Interface Reference

Parameters

Input/Output rect Rect On input, specifies the size and location of a rectangle.
On output, specifies a rectangle of the same size but a
different location.

Input dx integer The amount to shift the rectangle horizontally. Use a
positive value to shift the rectangle to the right. Use a
negative value to shift the rectangle to the left.

dy integer The amount to shift the rectangle vertically. Use a
positive value to shift the rectangle down. Use a negative
value to shift the rectangle up.

Return Value

None

RectRight

int rightEdge = RectRight (Rect rect);

Purpose

Returns the x coordinate of the right edge a rectangle. The right edge is not enclosed by the
rectangle. It is computed as follows.

rightEdge = rect.left + rect.width

Parameter

Input rect Rect Specifies a rectangle.

Return Value

rightEdge integer The x coordinate of the right edge of the rectangle. The
right edge is not enclosed by the rectangle, and is equal
to rect.left + rect.width .

See Also

RectBottom

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-206 © National Instruments Corporation

RectSameSize

int areSameSize = RectSameSize (Rect rect1, Rect rect2);

Purpose

Returns 1 if the two specified rectangle have the same height and width. Returns 0 otherwise.

Parameters

Input rect1 Rect Specifies the location and size of a rectangle.

rect2 Rect Specifies the location and size of a rectangle.

Return Value

areSameSize integer Indicates if the height, and width values in rect1 are identical
to those of rect2.

Return Codes

1 rect1 and rect2 have the identical height, and width.

0 rect1 and rect2 do not have the identical height and width.

RectSet

void RectSet (Rect * rect, int top, int left, int height, int width);

Purpose

Sets the values in an existing Rect structure. The Rect structure defines the location and size
of a rectangle.

Parameters

Input top integer The new location of the top edge of the rectangle.

left integer The new location of the left edge of the rectangle.

height integer The new height of the rectangle.

width integer The new width of the rectangle.

Output rect Rect The Rect structure in which the new values are set.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-207 LabWindows/CVI User Interface Reference

Return Value

None

See Also

MakeRect

RectSetBottom

void RectSetBottom (Rect * rect, int bottom);

Purpose

Sets the height of a Rect structure so that the bottom edge of the rectangle it defines is at the
specified location. The bottom edge of the rectangle is not enclosed by the rectangle and is equal
to the top plus the height.

Parameters

Input/Output rect Rect On input, specifies the size and location of a rectangle.
On output, specifies the same rectangle except with a
different bottom edge.

Input bottom integer The y coordinate of the new bottom edge.

Return Value

None

RectSetCenter

void RectSetCenter (Rect * rect, Point center);

Purpose

Modifies the values of a Rect structure so that it retains its current size but is centered around
the specified point.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-208 © National Instruments Corporation

Parameters

Input/Output rect Rect On input, specifies the size and location of a rectangle.
On output, specifies a rectangle of the same size but with
a different center point.

Input center Point A Point structure specifying the location of the new
center point of the rectangle.

Return Value

None

RectSetFromPoints

void RectSetFromPoints (Rect * rect, Point point1, Point point2);

Purpose

Sets the values in a Rect structure so that it defines the smallest rectangle that encloses two
specified points. Each point is located on a corner of the frame of the rectangle.

Parameters

Input point1 Point Specifies the location of a point.

point1 Point Specifies the location of a point.

Output rect Rect The Rect structure that is set to enclose the specified points.

Return Value

None

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-209 LabWindows/CVI User Interface Reference

RectSetRight

void RectSetRight (Rect * rect, int right);

Purpose

Sets the width of a Rect structure so that the right edge of the rectangle it defines is at the
specified location. The right edge of the rectangle is not enclosed by the rectangle and is equal to
the left edge plus the width.

Parameters

Input/Output rect Rect On input, specifies the size and location of a rectangle.
On output, specifies the same rectangle except with a
different right edge.

Input right integer The x coordinate of the new right edge.

Return Value

None

RectUnion

void RectUnion (Rect rect1, Rect rect2, Rect * unionRect);

Purpose

Calculates the smallest rectangle which encloses two specified rectangles.

Parameters

Input rect1 Rect Specifies the size and location of a rectangle.

rect1 Rect Specifies the size and location of a rectangle.

Output unionRect Rect The Rect structure that is set to the smallest rectangle that
encloses both rect1 and rect2.

Return Value

None

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-210 © National Instruments Corporation

RefreshGraph

int status = RefreshGraph (int panelHandle, int controlID);

Purpose

Immediately redraws the plot area.

This action removes any plots that were deleted using DeleteGraphPlot in Delayed Draw
mode. It also displays any plots that are plotted while ATTR_REFRESH_GRAPH is set to
FALSE.

Parameters

input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

Return Value

status integer Refer to Appendix A for error codes.

RegisterWinMsgCallback

int messageNumber = RegisterWinMsgCallback (WinMsgCallbackPtr callbackFunction,
char messageIdentifier[] ,
void * callbackData, int dataSize,
int * callbackID,
int deleteWhenProgramStops);

Note: This function is available only in the Windows version of LabWindows/CVI.

Purpose

This function registers a callback function that is called when the LabWindows/CVI application
receives the specified Windows message.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-211 LabWindows/CVI User Interface Reference

Parameters

Input callbackFunction WinMsgCallbackPtr The name of the user function that is
called whenever LabWindows/CVI
receives the Windows message returned by
RegisterWinMsgCallback . To send
this message to LabWindows/CVI, call the
Windows API function PostMessage
from a DLL.

messageIdentifier string A user-defined string that allows two
processes to use the same Windows
message number. (See discussion below.)

callbackData void * A pointer to user-defined data passed to
the event function.

dataSize integer If dataSize = zero, then the callbackData
pointer is the same pointer that will be
passed to callbackFunction when it is
called. If dataSize is greater than zero,
then the data pointed to by the
callbackData pointer will be copied and
the callbackFunction will be called with
the callbackData pointer pointing to the
copy of the data.

deleteWhenProgramStops integer If true,
UnRegisterWinMsgCallback is
implicitly called when the user program
terminates. If false, the callback function
remains installed when the user program
terminates.

Output callbackID integer The ID that is passed to
UnRegisterWinMsgCallback to
disable the callback function.

Return Value

messageNumber integer The message number assigned by
Windows. If 0 (zero), the function failed.

Parameter Discussion

callbackFunction is a pointer to an event function that takes the form:

void CVICALLBACK EventFunctionName (unsigned short wParam,
unsigned lParam, void * callbackData);

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-212 © National Instruments Corporation

The event function is passed the wParam and lParam Parameters that were passed to
PostMessage . The callbackData that was passed to RegisterWinMsgCallback is also
passed to the event function.

If you pass zero (0) for the messageIdentifier , a unique Windows message number is returned
by RegisterWinMsgCallback . Subsequent calls to RegisterWinMsgCallback (or
the Windows API function RegisterWindowMessage) does not return the same
messageNumber until you call UnRegisterWinMsgCallback with the callbackId
returned by RegisterWinMsgCallback .

If you pass a string for the messageIdentifier, any subsequent call to
RegisterWinMsgCallback (or the Windows API function RegisterWindowMessage)
using the same messageIdentifier string returns the same messageNumber.

To send the message registered through RegisterWinMsgCallback to LabWindows/CVI,
pass this message number to the Windows API function PostMessage .

If RegisterWinMsgCallback fails, this value will be 0.

RemovePopup

int status = RemovePopup (int removePopup);

Purpose

Removes either the active pop-up panel or all pop-up panels.

Parameters

Input removePopup integer Selects whether to remove all pop-up panels or only the
active pop-up panel. 1 = All

0 = Active Only.

Return Value

status integer Refer to Appendix A for error codes.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-213 LabWindows/CVI User Interface Reference

ReplaceAxisItem

int status = ReplaceAxisItem (int panelHandle, int controlID , int axis,
int itemIndex, char itemLabel[] , double itemValue);

Purpose

This function replaces the string/value pair at the specified index in the list of label strings for a
graph or strip chart axis. These strings appear in place of the numerical labels. They appear at the
location of their associated values on the graph or strip chart.

To see string labels on an X axis, you must set the ATTR_XUSE_LABEL_STRINGS attribute to
TRUE. To see string labels on a Y axis, you must set the ATTR_YUSE_LABEL_STRINGS
attribute to TRUE.

The original list of label strings can be created in the User Interface Editor or by calling
InsertAxisItem .

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

axis integer Specifies the axis for which to replace the string/value
pair at the specified index. Valid values:
VAL_XAXIS
VAL_LEFT_YAXIS
VAL_RIGHT_YAXIS (graphs only)

itemIndex integer The zero-based index of the item to be replaced.

itemLabel string The string to replace the existing string in the item at the
specified index. If you pass 0, then the existing string is
not replaced. A maximum of 31 characters from the
string are shown in an axis label.

itemValue double-
precision

The value to replace the existing value in the
string/value pair at the specified index. The string
appears as an axis label at the location of the value.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-214 © National Instruments Corporation

Return Value

status integer Refer to Appendix A for error codes.

See Also

InsertAxisItem, DeleteAxisItem, ClearAxisItems, GetNumAxisItems

ReplaceListItem

int status = ReplaceListItem (int panelHandle, int controlID , int itemIndex,
char itemLabel[] , ...);

Purpose

This function replaces the label/value pair at the specified index in a list control with a new
label/value pair.

Parameters

Input panelHandle integer The specifier for a particular panel that is
currently in memory. This handle will have been
returned by the LoadPanel , NewPanel , or
DuplicatePanel function.

controlID integer The defined constant (located in the .uir header
file) which was assigned to the control by the User
Interface Editor, or the ID returned by the
NewCtrl or DuplicateCtrl function.

itemIndex integer The zero-based index into the list where the item
will be replaced.

itemLabel string The label to be associated with the value being
replaced. Pass 0 to use the existing label.

itemValue depends on
the data type
of the list
control

The value to be associated with the label being
replaced. The data type must be the same as the
data type of the control.

Return Value

status integer Refer to Appendix A for error codes.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-215 LabWindows/CVI User Interface Reference

Parameter Discussion

The Parameter Discussion in InsertListItem tells you how to create columns and colored
text in List Box controls and separator bars in Ring controls.

For picture rings, the “label” is actually an image, and you pass the pathname of the image as the
itemLabel parameter. The image pathname may be a complete pathname or a simple
filename. If a simple filename, the image is located in the project. If not located in the project,
it is located in the directory of the project. If you pass NULL or the empty string, a placeholder
for the image is created, which can be filled using ReplaceListitem or SetImageBits .

ReplaceTextBoxLine

int status = ReplaceTextBoxLine (int panelHandle, int controlID , int lineIndex,
char text[]);

Purpose

This function replaces the string at the specified text box line.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

lineIndex integer The zero-based index into the text box.

text string The string to replace the line of text at the specified
lineIndex.

Return Value

status integer Refer to Appendix A for error codes.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-216 © National Instruments Corporation

ResetTextBox

int status = ResetTextBox (int panelHandle, int controlID , char text[]);

Purpose

This function replaces all text from the specified text box with the specified string.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

text string The string to replace all text in the specified text box.

Return Value

status integer Refer to Appendix A for error codes.

ResetTimer

int status = ResetTimer (int panelHandle, int controlID);

Purpose

This function resets the interval start times for timer controls. ResetTimer resets a timer
whether or not it is disabled or suspended. When a timer with an ATTR_INTERVAL of x
seconds is reset, the interval is rescheduled to end x seconds from the time of the call.

You may specify an individual timer control on a panel, all timer controls on a panel, or all timer
controls on all panels.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-217 LabWindows/CVI User Interface Reference

Parameters

Input panelHandle integer The specifier for a particular panel that is currently
in memory. The handle will have been returned by
the LoadPanel , NewPanel , or
DuplicatePanel function. Pass 0 to indicate all
timer controls on all panels.

controlID integer The defined constant (located in the .uir header
file) which was assigned to the control in the User
Interface Editor, or the ID returned by the NewCtrl
or DuplicateCtrl function. Pass 0 to indicate all
timer controls on the specified panel.

Return Value

status integer Refer to Appendix A for error codes.

See Also

SuspendTimerCallbacks, ResumeTimerCallbacks.

ResumeTimerCallbacks

int status = ResumeTimerCallbacks (void);

Purpose

Cancels the effect of a call to SuspendTimerCallbacks .

Callbacks resume using the ongoing interval schedules, which are not affected by
SuspendTimerCallbacks .

Return Value

status integer Refer to Appendix A for error codes.

See Also

SuspendTimerCallbacks, ResetTimer.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-218 © National Instruments Corporation

RunPopupMenu

int status = RunPopupMenu (int menuBarHandle, int menuID, int panelHandle,
int top, int left, int pinTop, int pinLeft , int pinHeight,
int pinWidth);

Purpose

Displays a menu and tracks mouse and keyboard events on the menu.

In most cases, you should call this function from a User Interface panel or control callback
function that has received a LEFT_CLICK, RIGHT_CLICK, or KEYPRESS event.

If the user selects an item from the menu, the following actions occur.

• If a callback function is associated with the menu item, the function is called.

• The ID of the menu item is returned.

Parameters

Input menuBarHandle integer The specifier for a particular menu bar that is
currently in memory. This handle will have been
returned by LoadMenuBar or NewMenuBar.

menuID integer The ID for a particular menu within a menu bar. The
Menu ID should be a constant name (located in the
.uir header file) generated in the User Interface
Editor, or a value returned by the NewMenu
function.

panelHandle integer The handle for the panel over which you want the
menu to appear. This handle will have been returned
by the LoadPanel , NewPanel , or
DuplicatePanel function.

top integer The vertical coordinate at which the upper left
corner of the menu is to be placed. Must be a value
from -32768 to 32767. It represents the pixel offset
from the top of the panel specified by panelHandle.

left integer The horizontal coordinate at which the upper left
corner of the menu is to be placed. Must be a value
from -32768 to 32767. It represents the pixel offset
from the left edge of the panel specified by
panelHandle.

(continues)

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-219 LabWindows/CVI User Interface Reference

Parameters (Continued)

pinTop integer The vertical coordinate of the upper left corner of
the "pin" area relative to the upper left corner of the
panel specified by the panelHandle parameter.

pinLeft integer The horizontal coordinate of the upper left corner of
the "pin" area relative to the upper left corner of the
panel specified by the panelHandle parameter.

pinHeight integer The height of the "pin" area.

pinWidth integer The width of the "pin" area.

Return Value

status integer Refer to Appendix A for error codes.

Return Codes

>0 ID of menu item selected.

 0 User did not select a menu item.

Parameter Discussion

pinTop, pinLeft , pinHeight, and pinWidth define the "pin" area. Usually the "pin" area is the
area on which the user pressed the mouse button in order to bring up the menu. When the user
releases the mouse button over the "pin" area, the menu remains visible (is "pinned"). When the
user releases the mouse button over any other area, the menu disappears.

If you do not want there to be a "pin" area, pass zeros for pinTop, pinLeft , pinHeight,
pinWidth .

RunUserInterface

int status = RunUserInterface (void);

Purpose

RunUserInterface runs the User Interface and issues events to callback functions.

RunUserInterface does not return until QuitUserInterface is called from within a
callback function. The value returned by RunUserInterface is the value that was passed to
QuitUserInterface .

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-220 © National Instruments Corporation

Return Value

status integer The value that was passed to the
QuitUserInterface function.

SavePanelState

int status = SavePanelState (int panelHandle, char filename[] , int stateIndex);

Purpose

Saves the state of a panel to a file. The current value of all controls on the panel are also saved.
The following attributes associated with the control’s values are saved: label/value pairs;
label/value pairs index; minimum, maximum, and increment values; and listbox checkmark state
values.

If you want to retain plotted array data in a graph control, your original array must still be in
memory when you call RecallPanelState . Alternatively, the graph could be configured to
Copy Original Plot Data in the User Interface Editor or via the SetGraphAttribute
function using ATTR_COPY_ORIGINAL_DATA.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

filename string The name of the file in which to save the panel state. If
the file already exists, its contents will be overwritten.
If the name is a simple filename (in other words,
contains no directory path), then the file is saved in the
directory containing the project.

stateIndex integer Assigns a unique state index to each panel state so that
you can save multiple panel states to the same file.

Return Value

status integer Refer to Appendix A for error codes.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-221 LabWindows/CVI User Interface Reference

SetActiveCtrl

int status = SetActiveCtrl (int panelHandle, int controlID);

Purpose

This function sets the active control on the specified panel.

The active control is the control that receives keyboard events when its panel is the active panel.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

Return Value

status integer Refer to Appendix A for error codes.

SetActiveGraphCursor

int status = SetActiveGraphCursor (int panelHandle, int controlID ,
int activeCursorNumber);

Purpose

Sets the active cursor on the specified graph control.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-222 © National Instruments Corporation

Parameters

Input panelHandle integer The specifier for a particular panel that is
currently in memory. This handle will have
been returned by the LoadPanel , NewPanel ,
or DuplicatePanel function.

controlID integer The defined constant (located in the .uir
header file) which was assigned to the control
by the User Interface Editor, or the ID returned
by the NewCtrl or DuplicateCtrl
function.

activeCursorNumber integer Specifies the new active cursor number. The
value may range from 1 to the number of
defined cursors for the specified graph. The
number of defined cursors is established when
you edit the graph in the User Interface Editor or
through SetCtrlAttribute.

Return Value

status integer Refer to Appendix A for error codes.

SetActivePanel

int status = SetActivePanel (int panelHandle);

Purpose

Makes the selected panel the active panel. The active panel is the panel which receives keyboard
events.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

Return Value

status integer Refer to Appendix A for error codes.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-223 LabWindows/CVI User Interface Reference

SetAxisScalingMode

int status = SetAxisScalingMode (int panelHandle, int controlID , int axis,
int axisScaling, double min, double max);

Purpose

Sets the scaling mode and the range of any graph axis or the Y axis of a strip chart.

This function is not valid for the X axis of a strip chart. To set the X offset and X increment for a
strip chart, use the SetCtrlAttribute function with the ATTR_XAXIS_OFFSET and
ATTR_XAXIS_GAIN attributes.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

axis integer Specifies for which axis to set the mode and range.
Valid values:
VAL_XAXIS (graphs only)
VAL_LEFT_YAXIS (graphs and strip charts)
VAL_RIGHT_YAXIS (graphs only)

axisScaling integer The scaling mode to be used for the axis. See table
below.

min double-
precision

The minimum axis value when the axis is configured
for manual scaling.

max double-
precision

The maximum axis value when the axis is configured
for manual scaling.

Return Value

status integer Refer to Appendix A for error codes.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-224 © National Instruments Corporation

Parameter Discussion

axisScaling must be one of the following values.

Valid Value Description

VAL_MANUAL The axis is set to manual scaling, and its range is
defined by min and max.

VAL_AUTOSCALE The axis is set to auto scaling. min and max are not
used. You cannot use auto scaling in strip charts.

VAL_LOCK The axis is set to manual scaling using the current
(usually auto-scaled) minimum and maximum
values on the axis. You cannot use VAL_LOCK in
strip charts.

If axisScaling is VAL_MANUAL, max must exceed min.

See Also

GetAxisScalingMode

SetAxisRange

int status = SetAxisRange (int panelHandle, int controlID , int xAxisScaling,
double xminXinit , double xmaxXinc, int yAxisScaling,
double ymin, double ymax);

Purpose

Sets the scaling mode and the range of the X and Y axes for a graph or strip chart control.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-225 LabWindows/CVI User Interface Reference

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header
file) which was assigned to the control by the User
Interface Editor, or the ID returned by the NewCtrl
or DuplicateCtrl function.

xAxisScaling integer The scaling mode used by the X axis.

xminXinit double-
precision

For a graph, xmin specifies the minimum axis range
when the X axis is configured for manual scaling. In
this case, xmax must exceed xmin. For a strip chart,
Xinit specifies the initial X axis value.

xmaxXinc double-
precision

For a graph, xmax specifies the maximum axis range
when the X axis is configured for manual scaling. In
this case, xmax must exceed xmin. For a strip chart,
Xinc specifies the X axis increment for each new
point.

yAxisScaling integer The scaling mode used by the Y axis.

ymin double-
precision

Specifies the minimum axis range when the Y axis is
configured for manual scaling. In this case, ymax
must exceed ymin.

ymax double-
precision

Specifies the maximum axis range when the Y axis is
configured for manual scaling. In this case, ymax
must exceed ymin.

Return Value

status integer Refer to Appendix A for error codes.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-226 © National Instruments Corporation

xAxisScaling

Valid Values Description

VAL_NO_CHANGE The current X axis scaling mode remains unchanged. xmin and xmax
are not used.

VAL_MANUAL The X axis is set to manual scaling, and its range is defined by xmin
and xmax.

VAL_AUTOSCALE The X axis is set to auto scaling. xmin and xmax are not used. Auto
scaling is not allowed for strip charts.

VAL_LOCK The X axis is set to manual scaling using the current axis range. Lock
scaling is not allowed for strip charts.

yAxisScaling

Valid Values Description

VAL_NO_CHANGE The current Y axis scaling mode remains unchanged. ymin and ymax
are not used.

VAL_MANUAL The Y axis is set to manual scaling, and its range is defined by ymin
and ymax.

VAL_AUTOSCALE The Y axis is set to auto scaling. ymin and ymax are not used. Auto
scaling is not allowed for strip charts.

VAL_LOCK The Y axis is set to manual scaling using the current axis range. Lock
scaling is not allowed for strip charts.

SetCtrlAttribute

int status = SetCtrlAttribute (int panelHandle, int controlID , int controlAttribute ,
...);

Purpose

Sets a control attribute for the selected panel and control.

Not all attributes are valid for each type of control, attributes may Return Values of different
data types with different valid ranges. A list of attributes, their data types and valid values are
provided in Table 3-9 in Chapter 3, Programming with the User Interface Library.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-227 LabWindows/CVI User Interface Reference

The attributes that users cannot set are denoted as such in Chapter 3, Programming with the User
Interface Library, Table 3-9. These attributes may be examined with the
GetCtrlAttribute function.

Note: When you set control attributes that affect the font of a control, you should modify the
ATTR_TEXT_FONT attribute first.

Parameters

Input panelHandle integer The specifier for a particular panel that is
currently in memory. This handle will have been
returned by the LoadPanel , NewPanel , or
DuplicatePanel function.

controlID integer The defined constant (located in the .uir header
file) which was assigned to the control by the User
Interface Editor, or the ID returned by the
NewCtrl or DuplicateCtrl function.

controlAttribute integer A particular control attribute.

attributeValue depends on
the attribute

The value of the specified control attribute.

Return Value

status integer Refer to Appendix A for error codes.

SetCtrlBitmap

int status = SetCtrlBitmap (int panelHandle, int controlID , int imageID,
int bitmapID);

Purpose

Sets the image of a control from a bitmap object. Can be used to replace an existing image on a
control or to create a new image on a control.

The following control types can contain images:

picture controls
picture rings
picture buttons
graph controls

For picture controls, this function can be used as an alternative to DisplayImageFile .

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-228 © National Instruments Corporation

For picture buttons, this function can be used as an alternative to SetCtrlAttribute with
the attribute set to ATTR_IMAGE_FILE.

For picture rings, this function can be used as an alternative to ReplaceListItem . (To add a
new entry, first call InsertListItem with a NULL value, and then call SetCtrlBitmap .)

For graphs, you must first call PlotBitmap with a NULL filename. Then call
SetCtrlBitmap .

If you want to delete an image, call SetCtrlBitmap with 0 as the value for the bitmap ID.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

imageID integer For picture rings, the zero-based index of an image in the
ring. For graphs, this argument is the plotHandle returned
from PlotBitmap . For picture controls and picture
buttons, this argument is ignored.

bitmapID integer The ID of the bitmap object containing the new image.
The ID must have been obtained from NewBitmap ,
GetBitmapFromFile , GetCtrlBitmap ,
ClipboardGetBitmap , GetCtrlDisplayBitmap ,
or GetPanelDisplayBitmap .

Return Value

status integer Refer to Appendix A for error codes.

See Also

NewBitmap, GetBitmapFromFile, GetCtrlBitmap, GetCtrlDisplayBitmap,
GetPanelDisplayBitmap, ClipboardGetBitmap.

SetCtrlIndex

int status = SetCtrlIndex (int panelHandle, int controlID , int itemIndex);

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-229 LabWindows/CVI User Interface Reference

Purpose

This function sets the current index of the specified list control.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

itemIndex integer The zero-based index into the list control.

Return Value

status integer Refer to Appendix A for error codes.

SetCtrlVal

int status = SetCtrlVal (int panelHandle, int controlID , ...);

Purpose

Sets the value of a control to the specified value.

When called on a list control (a list box or ring), SetCtrlVal sets the current list item to the
first item whose associated value is value. To set the current list item via zero-based index, use
the SetCtrlIndex function.

When called on a text box, SetCtrlVal appends value to the contents of the text box. Use
ResetTextBox to replace the contents of the text box with value.

Parameters

Input panelHandle integer The specifier for a particular panel that is
currently in memory. This handle will have been
returned by the LoadPanel , NewPanel , or
DuplicatePanel function.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-230 © National Instruments Corporation

controlID integer The defined constant (located in the .uir header
file) which was assigned to the control by the User
Interface Editor, or the ID returned by the
NewCtrl or DuplicateCtrl function.

value depends on
the data type
of the
control

The new value of the control. The data type of
value must match the data type of the control.

Return Value

status integer Refer to Appendix A for error codes.

SetCursorAttribute

int status = SetCursorAttribute (int panelHandle, int controlID , int cursorNumber,
int cursorAttribute , int attributeValue);

Purpose

Sets one of the following graph cursor attributes: mode, point style, cross hair style, color, or
y-axis.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-231 LabWindows/CVI User Interface Reference

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

cursorNumber integer The cursor number may range from 1 to the number of
defined cursors for the specified graph. The number of
defined cursors is established when you edit the graph
in the User Interface Editor or through
SetCtrlAttribute.

cursorAttribute integer Selects a particular graph cursor attribute.
Valid Attributes:
ATTR_CURSOR_MODE
ATTR_CURSOR_POINT_STYLE
ATTR_CROSS_HAIR_STYLE
ATTR_CURSOR_COLOR
ATTR_CURSOR_YAXIS

attributeValue integer The new value of the attribute. See Table 3-20 for a
complete listing of cursor attribute values.

Return Value

status integer Refer to Appendix A for error codes.

SetFontPopupDefaults

int status = SetFontPopupDefaults (char typefaceName[] , int bold, int underline,
int strikeOut , int italic , int justification ,
int textColor, int fontSize);

Purpose

This function specifies the settings to apply to the FontSelectPopup when the user presses
the Default button.

This function applies to all attributes that affect the sample text display, even attributes for which
the controls have been hidden.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-232 © National Instruments Corporation

The default values specified by this function apply only to the next call to
FontSelectPopup . Thus, this function should always be called before each call to
FontSelectPopup . If you do not call it before FontSelectPopup , the parameters have
the following default values:

Parameter Name Default Value

typefaceName VAL_DIALOG_FONT

bold 0

underline 0

strikeOut 0

italic 0

justification VAL_LEFT_JUSTIFIED

textColor VAL_BLACK

fontSize 12

Parameters

Input typefaceName string The default typeface name (for example,. "Courier")
for use by FontSelectPopup .

bold integer The default bold setting for use by
FontSelectPopup .

underline integer The default underline setting for use by
FontSelectPopup .

strikeOut integer The default strike out setting for use by
FontSelectPopup .

italic integer The default italic setting for use by
FontSelectPopup .

justification integer The default justification setting for use by
FontSelectPopup .

textColor integer The default text color setting for use by
FontSelectPopup .

fontSize integer The default font size for use by
FontSelectPopup .

Return Value

status integer Refer to Appendix A for error codes.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-233 LabWindows/CVI User Interface Reference

See Also

FontSelectPopup.

SetGraphCursor

int status = SetGraphCursor (int panelHandle, int controlID , int cursorNumber,
double x, double y);

Purpose

Sets the position of the specified graph cursor.

The position is relative to the current range of the X and Y axes.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header
file) which was assigned to the control by the User
Interface Editor, or the ID returned by the NewCtrl
or DuplicateCtrl function.

cursorNumber integer The cursor number may range from 1 to the number
of defined cursors for the specified graph. The
number of defined cursors is established when you
edit the graph in the User Interface Editor or through
SetCtrlAttribute.

x double-
precision

Specifies the X coordinate of the new cursor position.

y double-
precision

Specifies the Y coordinate of the new cursor position.

Return Value

status integer Refer to Appendix A for error codes.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-234 © National Instruments Corporation

SetGraphCursorIndex

int status = SetGraphCursorIndex (int panelHandle, int controlID , int cursorNumber,
int plotHandle, int arrayIndex);

Purpose

Attaches a cursor to particular data point defined by a plot handle and array index.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

cursorNumber integer The cursor number may range from 1 to the number of
defined cursors for the specified graph. The number of
defined cursors is established when you edit the graph
in the User Interface Editor or through
SetCtrlAttribute.

plotHandle integer Specifies the handle of the plot on which to attach the
cursor. Cursors cannot be attached to plots generated by,
PlotText PlotOval
PlotRectangle PlotArc
PlotLine PlotBitmap
PlotIntensity

arrayIndex integer Specifies the array index of the data point on which to
attach the cursor.

Return Value

status integer Refer to Appendix A for error codes.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-235 LabWindows/CVI User Interface Reference

SetIdleEventRate

int status = SetIdleEventRate (int interval);

Purpose

This function sets the interval between idle events.

Idle events can be processed by the main callback function if enabled through
InstallMainCallback .

The InstallMainCallback function takes the name of an event function (type
MainCallbackPtr), a pointer to callback data of any type, and a Boolean indicating whether
or not to get idle events.

The getIdleEvents feature allows program execution to proceed when it would normally be
suspended. For example, the program would normally be suspended in GetUserEvent or
RunUserInterface when the user holds the mouse button down on a control or pull-down
menu.

Note: Idle events are not generated while a top level panel is being moved or sized.

Parameters

Input interval integer Specifies the wait interval between generated idle
events (in milliseconds) A value of zero will cause idle
events to occur at the fastest possible rate. For non-zero
values, the resolution of idle events is the resolution of
the system timer (1 milliseconds on Windows) and an
operating system dependent latency.

Return Value

status integer Refer to Appendix A for error codes.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-236 © National Instruments Corporation

SetImageBits

int status = SetImageBits (int panelHandle, int controlID , int imageID,
int rowBytes, int depth, int width , int height,
int colorTable[] , unsigned char bitmap[] ,
unsigned char mask[]);

Purpose

Sets the bit values that define an image. Can be used to replace an existing image on a control or
to create a new image on a control.

The following control types can contain images: picture controls, picture rings, picture buttons,
graph controls.

For a picture control, this function can be used as an alternative to DisplayImageFile .

For a picture buttons, this function can be used as an alternative to SetCtrlAttribute with
the attribute ATTR_IMAGE_FILE.

For picture rings, this function can be used as an alternative to ReplaceListItem . (To add a
new entry, first call InsertListItem with a NULL value, and then call SetImageBits .)

For graphs, you must first call PlotBitmap with a NULL filename. Then call
SetImageBits .

If you want to delete an image, call SetImageBits with -1 as the value for the width or the
height parameter.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-237 LabWindows/CVI User Interface Reference

Parameters

Input panelHandle integer The specifier for a particular panel that is currently
in memory. This handle will have been returned by
the LoadPanel , NewPanel , or
DuplicatePanel function.

controlID integer The defined constant (located in the .uir header
file) which was assigned to the control by the User
Interface Editor, or the ID returned by the NewCtrl
or DuplicateCtrl function.

imageID integer For a picture ring, the zero-based index of an image
in the ring. For a graph, the plotHandle, returned
from PlotBitmap. For picture controls and buttons,
this is ignored.

rowBytes integer The number of bytes on each scan line of the image.

depth integer The number of bits per pixel.

width integer The width of the image, in pixels.

height integer The height of the image, in pixels.

colorTable integer
array

 An array of RGB color values.

bitmap unsigned
char array

 An array of bits that determine the colors to be
displayed on each pixel in the image.

mask unsigned
char array

 An array containing one bit per pixel in the image.
Each bit specifies whether the pixel is actually
drawn.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

If either the width or height parameter is -1 and there is an existing image, it is deleted.

Depending on the depth and width, the number of bits per scan line in the bitmap array may not
be an even multiple of 8. If not, then the extra bits needed to get to the next byte boundary is
considered "padding". If you specify rowBytes as a positive number, then the bits for each scan
line must start on a byte boundary, and so padding may be required. In fact, you can specify a
value for rowBytes that is larger than the minimum number of bytes actually needed. The extra

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-238 © National Instruments Corporation

bytes are also considered padding. If you pass -1, there is no padding at all. The bits for each
scan line immediately follow the bits for the previous scan line.

The valid values for pixelDepth are 1, 4, 8, 24, and 32.

If the pixelDepth is 8 or less, the number of entries in the colorTable array must equal 2 raised
to the power of the pixelDepth parameter. The bits array contain indices into the colorTable
array. If the pixelDepth is greater than 8, the colorTable parameter is not used. Instead the bits
array contains actual RGB color values, rather than indices into the colorTable array.

For a pixelDepth of 24, each pixel is represented by a 3-byte RGB value of the form
0xRRGGBB, where RR, GG, and BB represent the red, green and blue intensity of the color. The
RR byte should always be at the lowest memory address of the three bytes.

If the pixelDepth is 32, each pixel in the bits array is represented by a 32-bit RGB value of the
form 0x00RRGGBB, where RR, GG, and BB represent the red, green and blue intensity of the
color. The 32-bit value is treated as a native 32-bit integer value for the platform. The most
significant byte is always ignored. The BB byte should always be in the least significant byte.
On a little-endian platform (for example, Intel processors), BB would be at the lowest memory
address. On a big-endian platform (for example, Motorola processors), BB would be at the
highest address. Note that this differs from the format of the bits array when the pixelDepth is
24..

In the mask array, a bit value of 1 indicates that the pixel is drawn. 0 indicates that the pixel is
not drawn. Exception: If an image has a pixelDepth of 1, pixels with a bits value of 1
(foreground pixels) are always drawn and the mask affects only the pixels with a bitmap of 0
(background pixels). Each row of the mask must be padded to the nearest even-byte boundary.
For example, if the width of the image is 21 pixels, then there must be 32 bits (in other words, 4
bytes) of data in each row of the mask.

A mask is useful for achieving transparency.

You may pass NULL if you do not need a mask.

See Also

GetImageInfo, AllocImageBits, GetImageBits.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-239 LabWindows/CVI User Interface Reference

SetInputMode

int status = SetInputMode (int panelorMenuBarHandle, int controlorMenuItemID ,
int inputMode);

Purpose

Controls whether user input is recognized.

When an object’s input mode is disabled, it appears dimmed on the screen. Recognition of user
input can be controlled at the panel, control, menu bar, menu, or menu item level.

Parameters

Input panelorMenuBarHandle integer The handle of the panel or menu bar on which
you wish to set the recognition of user input.
If -1 is entered, all panels and all menu bars
are affected.

controlorMenuItemID integer The ID of the control or menu item on which
you wish to set the recognition of user input.
The ID is the defined constant that was
assigned to the control or menu item in the
User Interface Editor or the ID returned by
NewCtrl or NewMenuItem . If -1, all
controls on the panel and/or all items in the
menu bar are affected.

inputMode integer Specifies whether user input is enabled or
disabled.
0 = disabled.
1 = enabled.

Return Value

status integer Refer to Appendix A for error codes.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-240 © National Instruments Corporation

SetListItemImage

int status = SetListItemImage (int panelHandle, int controlID , int itemIndex,
int image);

Purpose

This function puts a predefined image in a list control on the same line as the specified item
index.

This function is not valid for picture ring controls. For picture rings, see SetImageBits .

Valid Images:

no folder VAL_NO_IMAGE

folder VAL_FOLDER

open folder VAL_OPEN_FOLDER

current folder VAL_CURRENT_FOLDER

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

itemIndex integer The zero-based index into the list.

image integer Selects an image for display in the specified list item.

Return Value

status integer Refer to Appendix A for error codes.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-241 LabWindows/CVI User Interface Reference

SetMenuBarAttribute

int status = SetMenuBarAttribute (int menuBarHandle, int menuorMenuItemID ,
int menuBarAttribute , ...);

Purpose

This function sets the value of the specified menu bar attribute.

Parameters

Input menuBarHandle integer The specifier for a particular menu bar that is
currently in memory. This handle will have
been returned by LoadMenuBar or
NewMenuBar.

menuorMenuItemID integer The menu or menu item ID assigned in the
User Interface Editor or returned by the
NewMenu or NewMenuItem . If the attribute
corresponds to the entire menu bar, pass 0 as
this parameter.

menuBarAttribute integer See Table 3-6 in Chapter 3 for a complete
listing of menu bar attributes.

attributeValue depends
on the
attribute

The value of the selected menu bar attribute.
See Table 3-6 in Chapter 3 for a complete
listing of menu bar attribute values.

Return Value

status integer Refer to Appendix A for error codes.

SetMouseCursor

int status = SetMouseCursor (int mouseCursorStyle);

Purpose

Sets the mouse cursor to the specified style.

This function sets the mouse cursor for all existing panels and any panels created by NewPanel
or DuplicatePanel or loaded by LoadPanel .

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-242 © National Instruments Corporation

Parameters

Input mouseCursorStyle integer Specifies the mouse cursor style. See Table 3-4
in Chapter 3 for a list of valid mouse cursor
styles.

Return Value

status integer Refer to Appendix A for error codes.

SetPanelAttribute

int status = SetPanelAttribute (int panelHandle, int panelAttribute , ...);

Purpose

This function sets a particular panel attribute.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

panelAttribute integer A particular panel attribute. See Table 3-2 in
Chapter 3 for a complete listing of panel attributes.

attributeValue depends
on the
attribute

The value of the specified panel attribute. See
Table 3-2 in Chapter 3 for a complete listing of panel
attribute values.

Return Value

status integer Refer to Appendix A for error codes.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-243 LabWindows/CVI User Interface Reference

SetPanelMenuBar

int status = SetPanelMenuBar (int panelHandle, int menuBarHandle);

Purpose

This function assigns a menu bar to the specified panel.

A panel can have only one menu bar at a time, but multiple panels can share the same menu bar.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

menuBarHandle integer The specifier for a particular menu bar that is currently
in memory. This handle will have been returned by
LoadMenuBar or NewMenuBar.

Return Value

status integer Refer to Appendix A for error codes.

SetPanelPos

int status = SetPanelPos (int panelHandle, int panelTop, int panelLeft);

Purpose

Sets the position of upper left corner (directly below the title bar) of the panel. The size of the
panel remains constant.

The size of the panel may be changed with the SetPanelAttribute function.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

panelTop integer The vertical coordinate at which the upper left corner of
the panel (directly below the title bar) is placed.

panelLeft integer The horizontal coordinate at which the upper left corner
of the panel (directly below the title bar) is placed.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-244 © National Instruments Corporation

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

The panelTop and panelLeft coordinates must be integer values from -32768 to 32767, or
VAL_AUTO_CENTER to center the panel. For a top-level panel, (0,0) is the upper-left corner of
the screen. For a child panel, (0,0) is the upper-left corner of the parent panel (directly below the
title bar) before the parent panel is scrolled.

SetPlotAttribute

int status = SetPlotAttribute (int panelHandle, int controlID , int plotHandle,
int plotAttribute , …);

Purpose

Sets the value of a graph plot attribute.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User
Interface Editor, or the ID returned by the NewCtrl
or DuplicateCtrl function.

plotHandle integer The handle for a particular plot in the graph. It will
have been returned by one of the graph plotting
functions.

plotAttribute integer Selects a particular graph plot attribute. See Table
3-20 in Chapter 3 for a complete listing of plot
attributes.

attributeValue depends
on the
attribute

The value of the specified plot attribute. See
Table 3-20 in Chapter 3 type of for a complete listing
of plot attributes.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-245 LabWindows/CVI User Interface Reference

Return Value

status integer Refer to Appendix A for error codes.

SetPrintAttribute

int status = SetPrintAttribute (int printAttribute , int attributeValue);

Purpose

Sets the value of the selected print attribute.

Parameters

Input printAttribute integer A particular print attribute. See Table 3-27 in Chapter 3
for a complete listing of print attributes.

attributeValue integer The new value of the print attribute. See Table 3-27 in
Chapter 3 for a complete listing of print attribute
values.

Return Value

status integer Refer to Appendix A for error codes.

SetSleepPolicy

int status = SetSleepPolicy (int sleepPolicy);

Purpose

Each time the User Interface Library checks for an event from the operating system, it may put
your program in the background ("to sleep") for a specified period of time. The benefit is that
other applications are given more processor time. The disadvantage is that your program may
run slower.

This function sets the degree your program "sleeps" when checking for events. The setting that is
optimal for your program depends on the operating system you are using and the other
applications you are running. If you think you may need to make an adjustment, try the different
settings and observe the resulting behavior.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-246 © National Instruments Corporation

Parameters

Input sleepPolicy integer The degree to which your program periodically sleeps
each time the User Interface Library checks for events
from the operating system.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

Sleep policy may be one of the following:

VAL_SLEEP_NONE 1 Never be put to sleep. The default value.

VAL_SLEEP_SOME 2 Be put to sleep a small period.

VAL_SLEEP_MORE 3 Be put to sleep for a longer period.

SetSystemAttribute

int status = SetSystemAttribute (int systemAttribute, …);

Purpose

Sets the value of a particular system attribute.

Parameters

Input systemAttribute integer ATTR_ALLOW_UNSAFE_TIMER_EVENTS
ATTR_REPORT_LOAD_FAILURE
ATTR_ALLOW_MISSING_CALLBACKS

attributeValue depends on
the attribute

The value of the specified attribute. See Table
3-26 for values associated with this attribute.

Return Value

status integer Refer to Appendix A for error codes.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-247 LabWindows/CVI User Interface Reference

SetSystemPopupsAttribute

int status = SetSystemPopupsAttribute (int popupAttribute , ...);

Purpose

Sets the value of a particular system pop-up attribute. All subsequent system pop-ups inherit the
new attribute value.

Parameters

Input popupAttribute integer ATTR_MOVABLE or
ATTR_SYSTEM_MENU_VISIBLE.

attributeValue depends
on the
attribute

The value of the specified attribute. See
Table 3-2 in Chapter 3 for valid values associated
with these attributes.

Return Value

status integer Refer to Appendix A for error codes.

SetTraceAttribute

int status = SetTraceAttribute (int panelHandle, int controlID , int traceNumber,
int traceAttribute , int attributeValue);

Purpose

Sets the value of a particular strip chart trace attribute.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-248 © National Instruments Corporation

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control by the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

traceNumber integer The strip chart trace number may be from 1 to the
number of defined strip chart traces. The number of
defined strip chart traces is established through editing
the strip chart in the User Interface Editor or calling
SetCtrlAttribute.

traceAttribute integer Selects a particular strip chart trace attribute. See
Table 3-20 in Chapter 3 for a complete listing of trace
attributes.

attributeValue integer The current value of the trace attribute.

Return Value

status integer Refer to Appendix A for error codes.

SetWaitCursor

int status = SetWaitCursor (int waitCursorState);

Purpose

Specifies the state of the wait cursor. If the wait cursor is activated, all other cursor styles are
overridden to display the wait cursor.

Parameters

Input waitCursorState integer Specifies the state of the wait cursor. When the wait
cursor is active, all other cursor styles are overridden
until cursor is deactivated
1 = wait cursor active
0 = wait cursor inactive.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-249 LabWindows/CVI User Interface Reference

Return Value

status integer Refer to Appendix A for error codes.

SuspendTimerCallbacks

int status = SuspendTimerCallbacks (void)

Purpose

This function stops all timer callbacks until a call is made to ResumeTimerCallbacks.
The function does not alter the ongoing schedule of timer intervals. It only inhibits the calling of
callback functions.

Return Value

status integer Refer to Appendix A for error codes.

See Also

ResumeTimerCallbacks, ResetTimer

UnRegisterWinMsgCallback

int status = UnRegisterWinMsgCallback (int callbackID);

Purpose

Note: This function is available only on the Windows version of LabWindows/CVI.

This function registers a callback function that will be called when the LabWindows/CVI
application receives the specified Windows message.

Parameters

Input callbackID integer The ID that was returned in the callbackID parameter
of RegisterWinMsgCallback.

Return Value

status integer 1 = Successfully unregistered the callback function
0 = Failed to unregister the callback function.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-250 © National Instruments Corporation

ValidatePanel

int status = ValidatePanel (int panelHandle, int * valid);

Purpose

Verifies that the value of each numeric control in notify mode is within the range specified in the
User Interface Editor or set by the SetCtrlAttribute function using ATTR_MAX_VALUE
and ATTR_MIN_VALUE.

If a control is out of range, a red outline appears around it prompting the user to enter a new
value.

When the control has the input focus, a pop-up appears indicating the control’s range and default
value.

Note: This function is automatically called when a user attempts to generate a commit event
on a validate control.

Parameters

Input panelHandle integer The specifier for a particular panel that is currently in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

Output valid integer A Boolean value indicating whether or not the panel is
valid. If valid, then each control is valid. If invalid, then
at least one and possibly more controls are invalid.
0 = one or more controls are out of range
1 = all controls are in range.

Return Value

status integer Refer to Appendix A for error codes.

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-251 LabWindows/CVI User Interface Reference

WaveformGraphPopup

int status = WaveformGraphPopup (char title [] , void * yArray , int numberofPoints,
int yDataType, double yGain, double yOffset,
double initialX , double xIncrement);

Purpose

Plots a waveform on a dialog box.

The values in YArray are scaled according to YGain and YOffset. The Xaxis timebase is scaled
according to InitialX and XIncrement. Each point in the plot is computed as follows:

xi = (i * XInc) + InitX

yi = (wfmi * YGain) + Yoff

where i is the index of the point in the waveform array.

Parameters

Input title string The title to be displayed on the dialog box.

yArray void * The array that contains the values to be plotted along
the Y axis. The data type must be of the type
specified by yDataType.

numberofPoints integer The number of points to plot. This value controls the
number of points to plot even if the number of
elements in xArray is greater than the
numberofPoints.

yDataType integer Specifies the data type of the yArray . See Table 3-11
in Chapter 3 for a list of data types.

yGain double-
precision

Specifies the gain to be applied to the waveform
(yArray) data.

yOffset double-
precision

Specifies a constant offset to be added to the
waveform (yArray) data.

initialX double-
precision

Specifies the initial value for the X axis.

xIncrement double-
precision

Specifies the increment along the X axis for each new
point.

Return Value

status integer Refer to Appendix A for error codes.

User Interface Library Reference Chapter 4

LabWindows/CVI User Interface Reference 4-252 © National Instruments Corporation

XGraphPopup

int status = XGraphPopup (char title [] , void * xArray , int numberofPoints,
int xDataType);

Purpose

Plots an array of X values against its indices along the Y axis in a dialog box.

Parameters

Input title string The title to be displayed in the dialog box.

xArray void * The array that contains the values to be plotted along
the X axis. The data type must be of the type specified
by xDataType.

numberofPoints integer The number of points to plot. This value controls the
number of points to plot even if the number of elements
in xArray is greater than the numberofPoints.

xDataType integer Specifies the data type of the xArray . See Table 3-11 in
Chapter 3 for a list of data types.

Return Value

status integer Refer to Appendix A for error codes.

XYGraphPopup

int status = XYGraphPopup (char title [] , void * xArray , void * yArray ,
int numberofPoints, int xDataType, int yDataType);

Purpose

Plots an array of Y values against an array of X values in a dialog box.

Parameters

Input title string The title to be displayed in the dialog box.

xArray void * The array that contains the values to be plotted along
the X axis. The data type must be of the type specified
by xDataType.

(continues)

Chapter 4 User Interface Library Reference

© National Instruments Corporation 4-253 LabWindows/CVI User Interface Reference

Parameters (Continued)

yArray void * The array that contains the values to be plotted along
the Y axis. The data type must be of the type specified
by yDataType.

numberofPoints integer The number of points to plot. This value controls the
number of points to plot even if the number of elements
in xArray is greater than the numberofPoints.

xDataType integer Specifies the data type of the xArray . See Table 3-11 in
Chapter 3 for a list of data types.

yDataType integer Specifies the data type of the yArray . See Table 3-11 in
Chapter 3 for a list of data types.

Return Value

status integer Refer to Appendix A for error codes.

YGraphPopup

int status = YGraphPopup (char title [] , void * yArray , int numberofPoints,
int yDataType);

Purpose

Plots an array of Y values against its indices along the X axis in a dialog box.

Parameters

Input title string The title to be displayed on the dialog box.

yArray void * The array that contains the values to be plotted along
the Y axis. The data type must be of the type specified
by yDataType.

numberofPoints integer The number of points to plot. This value controls the
number of points to plot even if the number of elements
in xArray is greater than the numberofPoints.

yDataType integer Specifies the data type of the yArray . See Table 3-11 in
Chapter 3 for a list of data types.

Return Value

status integer Refer to Appendix A for error codes.

© National Instruments Corporation 5-1 LabWindows/CVI User Interface Reference

Chapter 5
LabWindows/CVI Sample Programs
__

When you installed LabWindows/CVI, you had the option to install a collection of sample
programs that demonstrate various concepts of the User Interface Library. If you selected this
installation option, the programs were copied to the samples subdirectory. These sample
programs supplement the information presented in this manual. For more information on User
Interface and other example programs, see the samples.doc text file in LabWindows/CVI’s
main directory.

Example Program Files

Table 5-1 is a quick reference guide outlining the sample programs and the concepts that they
illustrate.

Table 5-1. Sample Program Files

Item
Number Project File Name Program Description

1. io.prj Standard I/O

2. callback.prj Introduction to Callback Functions

3. events.prj User Interface Events

4. menus.prj Menus Controlled by Callback Functions

5. graphs.prj Graphs

6. chart prj Strip Charts

7. cursors.prj Graph Cursor

8. popups.prj Pop-Up Panels

9. listbox.prj Selection Lists

10. panels.prj Child Windows

11. timerctl.prj. Timer Controls

12. textbox.prj Text Boxes

(continues)

Sample Programs Chapter 5

LabWindows/CVI User Interface Reference 5-2 © National Instruments Corporation

Table 5-1. Sample Program Files (Continued)

Item
Number Project File Name Program Description

13. picture.prj Using Picture Controls

14. build.prj Building a User Interface Programmatically

15. getusrev.prj Programming with Event Loops

16. keyfiltr.prj Handling Keyboard Input

17. moustate.prj Getting the Mouse State

18. listdelx.prj Colors in List Boxes

19. 2yaxis.prj Two Y Axes on a Graph

20. intgraph.prj Intensity Plots

21. autostrp.prj Autoscaling the Y-Axis on a Strip Chart

22. canvas.prj Canvas Controls

23. canvsbmk.prj Canvas Benchmark

24. drawpad.prj Using Canvas as Drawing Pad

25. piedemo.prj Pie Chart

26. imagedit.prj Changing Image Colors

27. clipbord.prj Using System Clipboard

Using the Sample Programs

Each of these sample programs are meant to illustrate a particular feature or concept of the
LabWindows/CVI User Interface Library. The source code is meant to be simple and easy to
read, so that you can use these sample programs to learn how to use particular controls and event
processing concepts, and act as a guideline for developing your own applications.

To examine or run a sample program, load the project file corresponding to the desired sample
into the Project Window. Remember, all sample programs are in the samples\userint
subdirectory. We recommend that you review the sample programs in the order presented in
Table 5-1. The first few samples highlight fundamental concepts for building programs in
LabWindows/CVI, while the later samples illustrate more specialized features of the User
Interface Library.

Chapter 5 Sample Programs

© National Instruments Corporation 5-3 LabWindows/CVI User Interface Reference

1. io.prjStandard I/O

This sample program demonstrates how to display and retrieve information from users through
the Standard Input/Output window using the ANSI C stdio library functions.

2. callback.prjIntroduction to Callback Functions

This sample program demonstrates how to use callback functions to respond to events generated
on a LabWindows/CVI user interface.

3. events.prjUser Interface Events

This sample program demonstrates how you can respond to multiple events generated from a
single control on the user interface. For example, this sample demonstrates how your programs
can recognize the difference between a left mouse click and right mouse click occurring on a
panel. This sample also shows how to gain access to supplementary event information, such as
the X and Y-coordinates of the mouse cursor when the click occurred.

4. menus.prjMenus Controlled by Callback Functions

This sample illustrates some of the ways that you can build menus in the menu editor in the User
Interface Editor, and how to respond to these menu selections through a menu callback function.

5. graphs.prjGraphs

This sample demonstrates the various graphing routines available in the User Interface Library.

6. chart.prjStrip Charts

This sample demonstrates how to display multiple traces on a strip chart control.

7. cursors.prjGraph Cursors

This sample program demonstrates how to use cursors for zooming operations on a graph
control, and how to use snap-to-point cursor to get X- and Y-coordinate information from the
graph.

8. popups.prjPop-Up Panels

This sample program demonstrates the various pop-up panel controls available in the
LabWindows/CVI User Interface Library.

Sample Programs Chapter 5

LabWindows/CVI User Interface Reference 5-4 © National Instruments Corporation

9. listbox.prjSelection Lists

This sample program demonstrates how to select, add, and delete items from a list box control
programmatically.

10. panels.prjChild Windows

This sample program demonstrates how you can define and display child windows in
LabWindows/CVI.

11. timerctl.prj—Timer Controls

This sample program demonstrates how you can use a timer control to perform a particular
action continuously without being affected by other user interface operations. For example, you
can plot data to a strip chart continuously without hesitation, even when a menu bar is pulled
down, or a panel is popped up on top of the strip chart.

12. textbox.prjText Boxes

This sample program demonstrates how you can use a text box control to display help and status
information. You see the fundamental actions you can perform on a text box such as adding a
new line of text, inserting a line of text, and deleting text.

13. picture.prjUsing Picture Controls

This sample program illustrates how you can use picture controls to enhance a user interface.
The program contains two PCX images imported into two picture controls. One image sits on
top of and covers the other. A left click event on the picture control causes a callback function
to bring the hidden image to the foreground, covering the other image. You could follow the
example of this sample program to create a toggle button that has different images for the on and
off states.

14. build.prj Building a User Interface Programmatically

This sample program demonstrates how to build a user interface from your program using the
NewPanel and NewCtrl functions, and how to install callback functions manually with the
InstallCtrlCallback function. It also illustrates how to change customize controls
programmatically using the SetCtrlAtrribute function.

Chapter 5 Sample Programs

© National Instruments Corporation 5-5 LabWindows/CVI User Interface Reference

15. getusrev.prjProgramming with Event Loops

This sample program demonstrates the event loop programming model. Although the callback
function model is much more flexible and easy to use, you can use the event loop model in
certain applications, such as modal dialog boxes. LabWindows for DOS uses the event loop
model exclusively. Thus, programs translated from LabWindows for DOS to LabWindows/CVI
use the event loop model unless you restructure the program to use the callback model.

16. keyfiltr.prj Handling Keyboard Input

This sample program demonstrates how you can make a control respond to keypress events. The
program displays a string control that is configured to handle keyboard input according to
options selected on the main panel of this example project.

17. moustate.prjGetting the Mouse State

This sample program demonstrates how to use the GetGlobalMouseState and
GetRelativeMouseState functions. You can use these functions to determine the current
position of the mouse, the current state of the mouse buttons, and the current state of the <Shift>
and <Ctrl> keys on the keyboard.

18. listdelx.prjColors in List Boxes

This sample program demonstrates how you can add items of different colors to a list box
control. Escape characters that you add to a string can control its background and foreground
colors as well as the positioning in the list box. (A list of the available escape sequences appears
in the help for the itemLabel parameter in the InsertListItem function panel.)

19. 2yaxis.prj - Two Y Axes on a Graph

This sample program shows how to use left and right Y axes on the same graph and how graph
cursors can be assigned to the two axes.

20. intgraph.prj - Intensity Plots

This sample program demonstrates the different ways in which intensity plots can be used in a
graph. It allows you to experiment with the different interpolation options as you plot a semi-
random block of data.

Sample Programs Chapter 5

LabWindows/CVI User Interface Reference 5-6 © National Instruments Corporation

21. autostrp.prj - Autoscaling the Y-Axis on a Strip Chart

This sample program demonstrates how you can autoscale the Y-axis on a strip chart. The User
Interface Library supports autoscaling only on graphs, not on strip charts. This program
simulates autoscaling by storing the data before sending it to the chart, and the using
SetAxisRange to modify the Y-axis as needed.

22. canvas.prj - Canvas Controls

This sample program demonstrates drawing on a Canvas control, including objects such as arcs,
rectangles, polygons, lines, ovals and bitmaps.

23. canvsbmk.prj - Canvas Benchmark

This sample program shows the increase in speed you can achieve by using a canvas control
instead of a graph control for drawing objects such as arcs, rectangles, polygons, lines, ovals and
bitmaps.

24. drawpad.prj - Using Canvas as Drawing Pad

This sample program demonstrates how to use a canvas control as a drawing port or scratch pad
for the mouse.

25. piedemo.prj - Pie Chart

This sample program demonstrates how to use a canvas control to draw a pie chart using an
instrument driver.

26. imagedit.prj - Changing Image Colors

This is a very simple program which modifies the colors of an existing image. It loads an image
into a picture ring and then makes use of the GetImageBits and SetImageBits functions.

27. clipbord.prj - Using System Clipboard

This sample program demonstrates how to use the clipboard functions to transfer images and
text to and from the system clipboard.

© National Instruments Corporation A-1 LabWindows/CVI User Interface Reference

Appendix A
Error Conditions

This appendix lists the meanings associated with the integer error codes that the
LabWindows/CVI User Interface library functions return.

Every function returns an integer code representing the result of the call. If the return code is
negative, an error has occurred. Otherwise, the function successfully completed.

Note: The GetUILErrorString function can convert an error code number into a
message string.

Table A-1. User Interface Library Error Codes

Code Error Message

-1 The Interface Manager could not be opened.

-2 The system font could not be loaded.

-3 The operation attempted cannot be performed while a pop-up menu is active.

-4 Panel, pop-up, menu bar, or plot ID is invalid.

-5 Attempted to position panel at an invalid location

-6 Attempted to make an inoperable control the active control.

-7 The operation requires that a panel be loaded.

-8 The operation requires that a pop-up menu be active.

-9 The operation requires that a menu bar be loaded.

-10 The control is not the type expected by the function.

-11 Invalid menu item ID.

-12 Out of memory!

-13 Invalid control ID.

-14 Value is invalid or out of range.

-15 File is not a User Interface file or has been corrupted.

-16 File format is out-of-date.

Error Conditions Appendix A

LabWindows/CVI User Interface Reference A-2 © National Instruments Corporation

(continues
)

Appendix A Error Conditions

© National Instruments Corporation A-3 LabWindows/CVI User Interface Reference

Table A-1. User Interface Library Error Codes (Continued)

Code Error Message

-17 PCX image is corrupted or incompatible with current display type.

-18 No user event possible in current configuration.

-19 Unable to open UIR file.

-20 Error reading UIR file.

-21 Error writing UIR file.

-22 Error closing UIR file.

-23 Panel state file has invalid format.

-24 Invalid panel ID or menu bar ID in resource file.

-25 Error occurred during hardcopy output.

-26 Invalid default directory specified in FileSelectPopup function.

-27 Operation is invalid for specified object.

-28 Unable to find specified string in menu.

-29 Palette menu items can only be added to the end of the menu.

-30 Too many menus in the menu bar.

-31 Separators cannot have checkmarks.

-32 Separators cannot have submenus.

-33 The menu item must be a separator.

-34 The menu item cannot be a separator.

-35 The menu item already has a submenu.

-36 The menu item does not have a submenu.

-37 The control ID passed must be a menu ID, a menu item ID, or NULL.

-38 The control ID passed must be a menu ID, or a menu item ID.

-39 The control ID passed was not a submenu ID.

-40 The control ID passed was not a valid ID.

(continues
)

Error Conditions Appendix A

LabWindows/CVI User Interface Reference A-4 © National Instruments Corporation

Table A-1. User Interface Library Error Codes (Continued)

Code Error Message

-41 The ID is not a menu bar ID.

-42 The ID is not a panel ID.

-43 This operation cannot be performed while this pop-up panel is active.

-44 This control/panel/menu/ does not have the specified attribute.

-45 The control type passed was not a valid type.

-46 The attribute passed is invalid.

-47 The fill option must be set to fill above or fill below to paint ring slide's fill color.

-48 The fill option must be set to fill above or fill below to paint numeric slide's fill color.

-49 The control passed is not a ring slide.

-50 The control passed is not a numeric slide.

-51 The control passed is not a ring slide with inc/dec arrows.

-52 The control passed is not a numeric slide with inc/dec arrows.

-53 The data type passed in is not a valid data type for the control.

-54 The attribute passed is not valid for the data type of the control.

-55 The index passed is out of range.

-56 There are no items in the list control.

-57 The buffer passed was to small for the operation.

-58 The control does not have a value.

-59 The value passed is not in the list control.

-60 The control passed must be a list control.

-61 The control passed must be a list control or a binary switch.

-62 The data type of the control passed must be set to a string.

-63 That attribute is not a settable attribute.

-64 The value passed is not a valid mode for this control.

(continues
)

Appendix A Error Conditions

© National Instruments Corporation A-5 LabWindows/CVI User Interface Reference

Table A-1. User Interface Library Error Codes (Continued)

Code Error Message

-65 A NULL pointer was passed when a non-NULL pointer was expected.

-66 The text background color on a menu ring cannot be set or gotten.

-67 The ring control passed must be one of the menu ring styles.

-68 Text cannot be colored transparent.

-69 A value cannot be converted to the specified data type.

-70 Invalid tab order position for control.

-71 The tab order position of an indicator-only control cannot be set.

-72 Invalid number.

-73 There is no menu bar installed for the panel.

-74 The control passed is not a text box.

-75 Invalid scroll mode for chart.

-76 Invalid image type for picture.

-77 The attribute is valid for child panels only. Some attributes of top level panels are
determined by the host operating system.

-78 The list control passed is not in check mode.

-79 The control values could not be completely loaded into the panel because the panel has
changed.

-80 Maximum value must be greater than minimum value.

-81 Graph does not have that many cursors.

-82 Invalid plot.

-83 New cursor position is outside plot area.

-84 The length of the string exceeds the limit.

-85 The specified callback function does not have the required prototype.

-86 The specified callback function is not a known function.

(continues
)

Error Conditions Appendix A

LabWindows/CVI User Interface Reference A-6 © National Instruments Corporation

Table A-1. User Interface Library Error Codes (Continued)

Code Error Message

-87 Graph cannot be in this mode without cursors.

-88 Invalid axis scaling mode for chart.

-89 The font passed is not in font table.

-90 The attribute value passed is not valid.

-91 Too many files are open.

-92 Unexpectedly reached end of file.

-93 Input/Output error.

-94 File not found.

-95 File access permission denied.

-96 File access is not enabled.

-97 Disk is full.

-98 File already exists.

-99 File already open.

-100 Badly formed pathname.

-101 File is damaged.

-102 The format of the resource file is too old to read.

-103 File is corrupted.

-104 The operation could not be performed.

-105 The control passed is not a ring knob, dial, or gauge.

-106 The control passed is not a numeric knob, dial, or gauge.

-107 The count passed is out of range.

-108 The keycode is not valid.

-109 The picture control has no image.

-110 Panel background cannot be colored transparent.

(continues
)

Appendix A Error Conditions

© National Instruments Corporation A-7 LabWindows/CVI User Interface Reference

Table A-1. User Interface Library Error Codes (Continued)

Code Error Message

-111 Title background cannot be colored transparent.

-112 Not enough memory for printing.

-113 The shortcut key passed is reserved.

-114 The format of the file is newer than this version of CVI.

-115 System printing error.

-116 Driver printing error.

-117 The deferred callback queue is full.

-118 The mouse cursor passed is invalid.

-119 Printing functions are not reentrant.

-120 Out of Windows GDI space.

-121 The panel must be visible.

-122 The control must be visible.

-123 The attribute is not valid for the type of plot.

-124 Intensity plots cannot use transparent colors.

-125 Color is invalid.

-126 The specified callback function differs only by a leading underscore from another
function or variable. Change one of the names for proper linking.

-127 Bitmap is invalid.

-128 There is no image in the control.

© National Instruments Corporation B-1 LabWindows/CVI User Interface Reference

Appendix B
Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve technical problems you might have as well as a form you can use to comment on
the product documentation. Filling out a copy of the Technical Support Form before contacting
National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around the world. In the U.S.
and Canada, applications engineers are available Monday through Friday from 8:00 a.m. to
6:00 p.m. (central time). In other countries, contact the nearest branch office. You may fax
questions to us at any time.

Electronic Services

Bulletin Board Support

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
files and documents to answer most common customer questions. From these sites, you can also
download the latest instrument drivers, updates, and example programs. For recorded
instructions on how to use the bulletin board and FTP services and for BBS automated
information, call (512) 795-6990. You can access these services at:

• United States: (512) 794-5422 or (800) 327-3077
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

• United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

• France: 1 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FaxBack Support
FaxBack is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access FaxBack from a touch-tone telephone at the
following number: (512) 418-1111.

Customer Communication Appendix B

LabWindows/CVI User Interface Reference B-2 © National Instruments Corporation

FTP Support

To access our FTP site, log on to our Internet host, ftp.natinst.com , as anonymous and
use your Internet address, such as joesmith@anywhere.com , as your password. The
support files and documents are located in the /support directories.

E-Mail Support (currently U.S. only)

You can submit technical support questions to the appropriate applications engineering team
through e-mail at the Internet addresses listed below. Remember to include your name, address,
and phone number so we can contact you with solutions and suggestions.

GPIB: gpib.support@natinst.com
DAQ: daq.support@natinst.com
VXI: vxi.support@natinst.com
LabVIEW: lv.support@natinst.com
LabWindows: lw.support@natinst.com
HiQ: hiq.support@natinst.com
Lookout: lookout.support@natinst.com
VISA: visa.support@natinst.com

Fax and Telephone Support
National Instruments has branch offices all over the world. Use the list below to find the
technical support number for your country. If there is no National Instruments office in your
country, contact the source from which you purchased your software to obtain support.

Telephone Fax

Australia 03 9 879 9422 03 9 879 9179
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 519 622 9310
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 90 527 2321 90 502 2930
France 1 48 14 24 24 1 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 95 800 010 0793 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, and use the
completed copy of this form as a reference for your current configuration. Completing this form accurately before
contacting National Instruments for technical support helps our applications engineers answer your questions more
efficiently.

If you are using any National Instruments hardware or software products related to this problem, include the
configuration forms from their user manuals. Include additional pages if necessary.

Name___

Company__

Address ___

Fax () Phone ()

Computer brand Model Processor

Operating system: Windows 3.1, Windows for Workgroups 3.11, Windows NT 3.1, Windows NT 3.5,
Windows 95, other (include version number)

Version of Excel (look at Excel’s About box): 5.0, 5.0c, other

Clock Speed MHz RAM MB Display adapter

Mouse yes no Other adapters installed

Hard disk capacity MB Brand

Instruments used

National Instruments hardware product model Revision

Configuration

National Instruments software product Version

Configuration

The problem is

List any error messages

The following steps will reproduce the problem

Hardware and Software Configuration Form
Record the settings and revisions of your hardware and software on the line to the right of each item. Complete a
new copy of this form each time you revise your software or hardware configuration, and use this form as a
reference for your current configuration. When you complete this form accurately before contacting National
Instruments for technical support, our applications engineers can answer your questions more efficiently.

National Instruments Products

Data Acquisition Hardware Revision __

Interrupt Level of Hardware __

DMA Channels of Hardware __

Base I/O Address of Hardware __

NI-DAQ, LabVIEW, or
LabWindows Version ___

Other Products

Computer Make and Model ___

Microprocessor __

Clock Frequency ___

Type of Video Board Installed ___

Operating System ___

Operating System Version __

Operating System Mode ___

Programming Language __

Programming Language Version ___

Other Boards in System __

Base I/O Address of Other Boards __

DMA Channels of Other Boards ___

Interrupt Level of Other Boards __

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our products. This
information helps us provide quality products to meet your needs.

Title: LabWindows®/CVI User Interface Reference Manual

Edition Date: July 1996

Part Number: 320683C-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name___

Title__

Company__

Address ___

Fax () Phone ()

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway, MS 53-02 MS 53-02
Austin, TX 78730-5039 (512) 794-5678

© National Instruments Corporation Glossary-1 LabWindows/CVI User Interface Reference

Glossary

Prefix Meaning Value

m- milli- 10-3

µ- micro- 10-6

B

binary switch A control that selects between two states: on and off.

bitmap A set of data that can be used to draw a graphic image. The data
consist of information determining the height and width of the image
or pixel grid, and the color of each pixel.

bps Bits per second.

C

canvas An arbitrary drawing surface to display text, shapes, and bitmap
images.

CodeBuilder The LabWindows/CVI feature that creates code based on a .uir file
to connect your GUI to the rest of your program. This code can be
compiled and run as soon as it is created.

confirm pop-up panel Allows you to confirm an action before it is taken.

control An object that resides on a panel and provides a mechanisms for
accepting input from and displaying information to the user.

E

event Informs the application program that the user has performed an action.
An event is generated whenever the user selects a command from the
menu bar or manipulates a control that was configured to generate
events.

Glossary

LabWindows/CVI User Interface Reference Glossary-2 © National Instruments Corporation

F

file select pop-up panel A predefined pop-up panel that displays a list of files on disk from
which the user can select.

G

graph control Displays graphical data as one or more plots.

graph pop-up panel A predefined pop-up panel for displaying numerical data graphically.
There are different functions for graphing X, Y, X-Y, and waveform
data sets.

H

hot control Similar to normal control except that the control generates an event
when acted upon by the user. Events are returned to the application
program, which must determine what action to take. Normally, a hot
control generates an event when its state is changed. For example, if
the user moves a binary switch from off to on, an event is generated.

I

immediate command A menu title that ends in an exclamation point does not have an
associated menu. Selecting an immediate command executes it
directly.

in inches.

indicator control A control that can be changed programmatically but cannot be
operated by the user. LED, scale, text, text box, graph (without
cursors), and strip chart controls are always indicators.

L

LED A control that is modeled to operate like light emitting diodes, which
indicate on/off states. When an LED is on, it appears lighted.

Glossary

© National Instruments Corporation Glossary-3 LabWindows/CVI User Interface Reference

M

MB Megabytes of memory.

menu bar A mechanism for encapsulating a set of commands. A menu bar
appears at the top of the screen and contains a set of menu titles.

message pop-up panel A predefined pop-up panel for displaying a message.

N

normal control A control that can be operated by the user and changed
programmatically.

numeric/string control Used to input or view numeric values or text strings. A typical use of
this control might be to input a person's name or to display a voltage
value.

P

panel A rectangular region of the screen containing a set of controls that
accept input from the user and display information to the user. Panels
can perform many different functions, from representing the front
panel of an instrument to allowing the user to select a file name.

pen A drawing construct which defines the characteristics to be used to
draw images on a canvas control. The settable attributes include width,
style, color, mode and pattern of the line or object drawn.

pixel An element of a picture. The smallest resolvable rectangular area of an
image, either on a screen or stored in memory. Each pixel has its own
brightness and color, usually represented as a red, green, and blue
intensities (see RGB).

point A structure used to specify the location of a point in the Cartesian
coordinate systems used in canvas controls and bitmaps. The structure
contains two integer values, x and y .

plot Consists of a curve, a point, a geometric shape, or a text string.

pop-up panel A panel that pops up, accepts user input, and then disappears.

prompt pop-up panel A predefined pop-up panel for requesting input from the user.

Glossary

LabWindows/CVI User Interface Reference Glossary-4 © National Instruments Corporation

pull-down menu A menu title without an exclamation point contains a collection of
commands that appear when you select it.

push button Used to trigger an action indicated by a label on the button.

R

radio button Similar to binary switches, these buttons allow you to switch between
the off and on state. A radio button is either pressed in or popped out.

rect A structure used to specify the location and size of a rectangle in the
Cartesian coordinate systems used in canvas controls and bitmaps. The
structure contains four integer values, top , left , height , and
width .

resource file Contains all of the object associated with a user interface. This
includes menu bars, panels, controls, pop-up panels, preferences,
images, and fonts. To display user interface objects, an application
program must call the User Interface Library to load them from the
resource file. A single application program can use multiple resource
files.

RGB Red-green-blue. The three colors of light which can be mixed to
produce any other color.

ring control Allows you to select from a group of items. Only the currently
selected item shows. You can scroll forward or backward through the
list of items, or you can select an item through its pop-up format.

S

s Seconds.

scale control Indicates the magnitude of a value relative to a predefined range. The
scale moves up and down within the control as its value changes.
Scale controls are indicator controls and cannot be operated.

selection list control Used to select a item from a list.

slide control Allows you to select one item from a group of items. The slider, or
cross-bar, indicates the current selection.

Glossary

© National Instruments Corporation Glossary-5 LabWindows/CVI User Interface Reference

slider The cross-bar of the slide control that points to the currently selected
item.

standard libraries The LabWindows Graphics, Analysis, Formatting and I/O, GPIB,
GPIB-488.2, RS-232, and System libraries.

string control See numeric/string control.

strip chart control A graph that displays graphical data as one or more traces in real time.

stylized fonts Fixed-size, bitmapped fonts that have a variety of type faces.

system fonts Bitmapped fonts designed for a particular display adapter. They are
sized to fit the standard 80-column by 25-line display format. The
User Interface Library automatically selects the appropriate system
font for your adapter.

T

text boxes Display a window of text.

text controls Display a string of text.

timer control A user interface control that schedules the periodic execution of a
callback function. A typical use of this control might be to update a
graph every second.

traces Curves in strip charts.

U

User Interface Editor Used to create resource files.

V

validate control Similar to hot control except that all numeric/scalar controls on the
panel are validated before the event is generated. The value of each
numeric/scalar control is checked against its predefined range. If an
invalid condition is found, a dialog box appears to inform you.

© National Instruments Corporation Index-1 LabWindows/CVI User Interface Reference

Index

A

Add File to Project command, File
menu, 2-4

Align Horizontal Centers command,
Arrange menu, 2-21

Alignment command, Arrange menu, 2-20
to 2-21

All Callbacks command, Generate
menu, 2-27

All Code command
description, 2-25 to 2-26
Generate All Code dialog box, 2-25

AllocBitmapData function, 4-12 to 4-13
AllocImageBits function, 4-14 to 4-15
Always Append Code to End option,

Preferences command, 2-30
Apply Default Font command, Edit

menu, 2-15
Arrange menu, User Interface Editor

Align Horizontal Centers
command, 2-21

Alignment command, 2-20 to 2-21
Center Label command, 2-22
Control Coordinates command, 2-23
Control ZPlane Order command, 2-22
Distribute Vertical Centers

command, 2-22
Distribution command, 2-21 to 2-22
illustration, 2-20

ASCII keys, 3-26, 4-157 to 4-158
ASCII text format

loading objects into User Interface
Editor window, 2-34

saving contents of User Interface Editor
window in, 2-33

Assign Missing Constants command,
Options menu, 2-33

ATTR_ACTIVATE_WHEN_CLICKED_ON,
3-12

ATTR_ACTIVE, 3-12

ATTR_ACTIVE_YAXIS, 3-72
ATTR_ALLOW_MISSING_CALLBACKS,

3-86
ATTR_ALLOW_ROOM_FOR_IMAGES,

3-39
ATTR_ALLOW_UNSAFE_TIMER_EVENTS,

3-86
ATTR_BACKCOLOR, 3-12
ATTR_BINARY_SWITCH_COLOR, 3-41
ATTR_BORDER_VISIBLE, 3-68
ATTR_CALLBACK_DATA, 3-12, 3-24,

3-32
ATTR_CALLBACK_FUNCTION_POINTER,

3-12, 3-24, 3-32
ATTR_CALLBACK_NAME, 3-12, 3-24,

3-32
ATTR_CALLBACK_NAME_LENGTH,

3-12, 3-24, 3-32
ATTR_CAN_MAXIMIZE, 3-12, 3-17
ATTR_CAN_MINIMIZE, 3-12, 3-17
ATTR_CHECK_MODE, 3-39
ATTR_CHECK_RANGE, 3-37, 3-51
ATTR_CHECK_STYLE, 3-40
ATTR_CHECKED, 3-25
ATTR_CLOSE_CTRL, 3-12
ATTR_CLOSE_ITEM_VISIBLE, 3-12,

3-17
ATTR_CMD_BUTTON_COLOR, 3-40
ATTR_COLOR_MODE, 3-89, 3-91
ATTR_CONFORM_TO_SYSTEM, 3-13
ATTR_CONSTANT_NAME, 3-13, 3-24,

3-32
ATTR_CONSTANT_NAME_LENGTH,

3-13, 3-24, 3-32
ATTR_COPY_ORIGINAL_DATA, 3-72,

3-84 to 3-85
ATTR_CROSS_HAIR_STYLE, 3-74, 3-78
ATTR_CTRL_INDEX, 3-37
ATTR_CTRL_MODE, 3-33
ATTR_CTRL_STYLE, 3-32, 3-46 to 3-50
ATTR_CTRL_TAB_POSITION, 3-33

Index

LabWindows/CVI User Interface Reference Index-2 © National Instruments Corporation

ATTR_CTRL_VAL, 3-33
ATTR_CURSOR_COLOR, 3-74
ATTR_CURSOR_MODE, 3-74
ATTR_CURSOR_POINT_STYLE, 3-74,

3-78 to 3-79
ATTR_CURSOR_YAXIS, 3-74
ATTR_DATA_MODE, 3-72, 3-84
ATTR_DATA_TYPE, 3-36, 3-50
ATTR_DFLT_INDEX, 3-37
ATTR_DFLT_VALUE, 3-37
ATTR_DIG_DISP_HEIGHT, 3-42
ATTR_DIG_DISP_LEFT, 3-42
ATTR_DIG_DISP_TOP, 3-42
ATTR_DIG_DISP_WIDTH, 3-42
ATTR_DIMMED, 3-13, 3-24, 3-32
ATTR_DRAW_LIGHT_BEVEL, 3-25
ATTR_DRAW_POLICY, 3-56, 3-57
ATTR_DUPLEX, 3-89, 3-90
ATTR_EDGE_STYLE, 3-68
ATTR_EJECT_AFTER, 3-89, 3-90
ATTR_ENABLE_ZOOMING, 3-72
ATTR_ENABLED, 3-44, 3-64, 3-65
ATTR_ENTER_IS_NEWLINE, 3-38
ATTR_EXTRA_LINES, 3-38
ATTR_FILL_COLOR, 3-42
ATTR_FILL_HOUSING_COLOR, 3-43
ATTR_FILL_OPTION, 3-43
ATTR_FIRST_CHILD, 3-13
ATTR_FIRST_VISIBLE_LINE, 3-39
ATTR_FIT_MODE, 3-44
ATTR_FLOATING, 3-13
ATTR_FORMAT, 3-37, 3-51
ATTR_FRAME_COLOR, 3-13, 3-34
ATTR_FRAME_STYLE, 3-13, 3-18 to 3-19
ATTR_FRAME_THICKNESS, 3-13
ATTR_FRAME_VISIBLE, 3-44
ATTR_GRAPH_BGCOLOR, 3-68
ATTR_GRID_COLOR, 3-68
ATTR_HEIGHT, 3-13, 3-33
ATTR_HILITE_CURRENT_ITEM, 3-40
ATTR_HSCROLL_OFFSET, 3-13, 3-38
ATTR_HSCROLL_OFFSET_MAX, 3-13
ATTR_IMAGE_FILE, 3-45
ATTR_IMAGE_FILE_LENGTH, 3-45
ATTR_INCR_VALUE, 3-37

ATTR_INNER_LOG_MARKERS_VISIBLE,
3-68

ATTR_INTERPOLATE_PIXELS, 3-75
ATTR_INTERVAL, 3-44, 3-64
ATTR_IS_SEPARATOR, 3-25
ATTR_ITEM_NAME, 3-25
ATTR_ITEM_NAME_LENGTH, 3-25
ATTR_LABEL_BGCOLOR, 3-35
ATTR_LABEL_BOLD, 3-34
ATTR_LABEL_COLOR, 3-34
ATTR_LABEL_FONT, 3-34
ATTR_LABEL_FONT_NAME_LENGTH,

3-34
ATTR_LABEL_HEIGHT, 3-35
ATTR_LABEL_ITALIC, 3-34
ATTR_LABEL_JUSTIFY, 3-35
ATTR_LABEL_LEFT, 3-35
ATTR_LABEL_POINT_SIZE, 3-34
ATTR_LABEL_RAISED, 3-35
ATTR_LABEL_SIZE_TO_TEXT, 3-35
ATTR_LABEL_STRIKEOUT, 3-34
ATTR_LABEL_TEXT, 3-34
ATTR_LABEL_TEXT_LENGTH, 3-34
ATTR_LABEL_TOP, 3-35
ATTR_LABEL_UNDERLINE, 3-34
ATTR_LABEL_VISIBLE, 3-34
ATTR_LABEL_WIDTH, 3-35
ATTR_LEFT, 3-14, 3-33
ATTR_LINE_STYLE, 3-74, 3-79
ATTR_MARKER_END_ANGLE, 3-43
ATTR_MARKER_START_ANGLE, 3-43
ATTR_MARKER_STYLE, 3-42
ATTR_MAX_ENTRY_LENGTH, 3-38
ATTR_MAX_VALUE, 3-37
ATTR_MENU_ARROW_COLOR, 3-43
ATTR_MENU_BAR_VISIBLE, 3-14
ATTR_MENU_HEIGHT, 3-14
ATTR_MENU_NAME, 3-25
ATTR_MENU_NAME_LENGTH, 3-25
ATTR_MIN_VALUE, 3-37
ATTR_MOUSE_CURSOR, 3-14, 3-19
ATTR_MOVABLE, 3-14
ATTR_NEEDLE_COLOR, 3-42
ATTR_NEXT_CTRL, 3-33
ATTR_NEXT_PANEL, 3-14
ATTR_NO_EDIT_TEXT, 3-40

Index

© National Instruments Corporation Index-3 LabWindows/CVI User Interface Reference

ATTR_NSCROLL_OFFSET_MAX, 3-37
ATTR_NUM_CHILDREN, 3-14
ATTR_NUM_COPIES, 3-89
ATTR_NUM_CTRLS, 3-14
ATTR_NUM_CURSORS, 3-72
ATTR_NUM_MENU_ITEMS, 3-25
ATTR_NUM_MENUS, 3-25
ATTR_NUM_POINTS, 3-75
ATTR_NUM_TRACES, 3-73
ATTR_OFF_COLOR, 3-41
ATTR_OFF_TEXT, 3-41
ATTR_OFF_TEXT_LENGTH, 3-41
ATTR_OFF_VALUE, 3-41
ATTR_OFF_VALUE_LENGTH, 3-41
ATTR_ON_COLOR, 3-41
ATTR_ON_TEXT, 3-41
ATTR_ON_TEXT_LENGTH, 3-41
ATTR_ON_VALUE, 3-41
ATTR_ON_VALUE_LENGTH, 3-41
ATTR_ORIENTATION, 3-89, 3-90
ATTR_OVERLAPPED, 3-33
ATTR_OVERLAPPED_POLICY, 3-56,

3-58
ATTR_PANEL_FIRST_CTRL, 3-14
ATTR_PANEL_MENU_BAR_CONSTANT,

3-14
ATTR_PANEL_MENU_BAR_CONSTANT

_LENGTH, 3-14
ATTR_PANEL_PARENT, 3-14
ATTR_PAPER_HEIGHT, 3-89, 3-90
ATTR_PAPER_WIDTH, 3-89, 3-90
ATTR_PARENT_SHARES_SHORTCUT

_KEYS, 3-14
ATTR_PEN_COLOR, 3-56
ATTR_PEN_FILL_COLOR, 3-56
ATTR_PEN_MODE, 3-56, 3-58
ATTR_PEN_PATTERN, 3-56, 3-58 to 3-59
ATTR_PEN_STYLE, 3-56
ATTR_PEN_WIDTH, 3-57
ATTR_PICT_BGCOLOR, 3-44
ATTR_PLOT_AREA_HEIGHT, 3-68
ATTR_PLOT_AREA_WIDTH, 3-68
ATTR_PLOT_BGCOLOR, 3-68
ATTR_PLOT_FONT, 3-75
ATTR_PLOT_FONT_NAME_LENGTH,

3-75

ATTR_PLOT_ORIGIN, 3-75, 3-81
ATTR_PLOT_SNAPPABLE, 3-75
ATTR_PLOT_STYLE, 3-74, 3-80
ATTR_PLOT_XDATA, 3-76
ATTR_PLOT_XDATA_SIZE, 3-77
ATTR_PLOT_XDATA_TYPE, 3-76
ATTR_PLOT_YAXIS, 3-75
ATTR_PLOT_YDATA, 3-76
ATTR_PLOT_YDATA_SIZE, 3-77
ATTR_PLOT_YDATA_TYPE, 3-76
ATTR_PLOT_ZDATA, 3-76
ATTR_PLOT_ZDATA_SIZE, 3-77
ATTR_PLOT_ZDATA_TYPE, 3-76
ATTR_PLOT_ZPLANE_POSITION, 3-76
ATTR_POINTS_PER_SCREEN, 3-73
ATTR_PRECISION, 3-37
ATTR_REFRESH_GRAPH, 3-72, 3-83
ATTR_REPORT_LOAD_FAILURE, 3-86,

3-87
ATTR_SCROLL_BAR_COLOR, 3-14,

3-39
ATTR_SCROLL_BAR_SIZE, 3-39
ATTR_SCROLL_BARS, 3-15, 3-39
ATTR_SCROLL_MODE, 3-73
ATTR_SHIFT_TEXT_PLOTS, 3-73
ATTR_SHORTCUT_KEY, 3-25, 3-40
ATTR_SHOW_DIG_DISP, 3-42
ATTR_SHOW_INCDEC_ARROWS, 3-37
ATTR_SHOW_MORE_BUTTON, 3-43
ATTR_SHOW_RADIX, 3-37
ATTR_SHOW_TRANSPARENT, 3-43
ATTR_SIZABLE, 3-15
ATTR_SIZE_TO_TEXT, 3-40
ATTR_SLIDER_COLOR, 3-42
ATTR_SLIDER_HEIGHT, 3-43
ATTR_SLIDER_WIDTH, 3-43
ATTR_SMOOTH_UPDATE, 3-73, 3-82,

3-84
ATTR_STRING_TEXT_LENGTH, 3-38
ATTR_SUBIMAGE_HEIGHT, 3-45
ATTR_SUBIMAGE_LEFT, 3-45
ATTR_SUBIMAGE_TOP, 3-45
ATTR_SUBIMAGE_WIDTH, 3-45
ATTR_SUBMENU_ID, 3-25
ATTR_SYSTEM_MENU_VISIBLE, 3-15

Index

LabWindows/CVI User Interface Reference Index-4 © National Instruments Corporation

ATTR_SYSTEM_WINDOW_HANDLE,
3-15, 3-17

ATTR_TAB_INTERVAL, 3-89
ATTR_TEXT_BGCOLOR, 3-36
ATTR_TEXT_BOLD, 3-35
ATTR_TEXT_CLICK_TOGGLES_CHEC

K, 3-39, 3-40
ATTR_TEXT_COLOR, 3-35
ATTR_TEXT_FONT, 3-35
ATTR_TEXT_FONT_NAME_LENGTH,

3-36
ATTR_TEXT_ITALIC, 3-36
ATTR_TEXT_JUSTIFY, 3-36
ATTR_TEXT_POINT_SIZE, 3-36
ATTR_TEXT_RAISED, 3-40
ATTR_TEXT_SELECTION_LENGTH,

3-38
ATTR_TEXT_SELECTION_START, 3-38
ATTR_TEXT_STRIKEOUT, 3-36
ATTR_TEXT_UNDERLINE, 3-36
ATTR_TEXT_WRAP, 3-89
ATTR_TICK_STYLE, 3-42
ATTR_TITLE, 3-15
ATTR_TITLE_BACKCOLOR, 3-15
ATTR_TITLE_BOLD, 3-15
ATTR_TITLE_COLOR, 3-15
ATTR_TITLE_FONT, 3-15
ATTR_TITLE_FONT_NAME_LENGTH,

3-15
ATTR_TITLE_ITALIC, 3-15
ATTR_TITLE_LENGTH, 3-15
ATTR_TITLE_POINT_SIZE, 3-15
ATTR_TITLE_SIZE_TO_FONT, 3-16
ATTR_TITLE_STRIKEOUT, 3-16
ATTR_TITLE_UNDERLINE, 3-16
ATTR_TITLEBAR_THICKNESS, 3-16
ATTR_TITLEBAR_VISIBLE, 3-16
ATTR_TOP, 3-16, 3-33
ATTR_TOTAL_LINES, 3-38
ATTR_TRACE_BGCOLOR, 3-76
ATTR_TRACE_COLOR, 3-74
ATTR_TRACE_POINT_STYLE, 3-74,

3-78 to 3-79
ATTR_TRACE_VISIBLE, 3-74
ATTR_USE_SUBIMAGE, 3-45
ATTR_VISIBLE, 3-16, 3-33

ATTR_VISIBLE_LINES, 3-39
ATTR_VSCROLL_OFFSET, 3-16
ATTR_VSCROLL_OFFSET_MAX, 3-16
ATTR_WIDTH, 3-16, 3-33
ATTR_WINDOW_ZOOM, 3-16, 3-17
ATTR_WRAP_MODE, 3-38
ATTR_XAXIS_GAIN, 3-69
ATTR_XAXIS_OFFSET, 3-69
ATTR_XCOORD_AT_ORIGIN, 3-57
ATTR_XDIVISIONS, 3-69
ATTR_XENG_UNITS, 3-69
ATTR_XFORMAT, 3-69
ATTR_XGRID_VISIBLE, 3-69
ATTR_XLABEL_VISIBLE, 3-69
ATTR_XMAP_MODE, 3-73
ATTR_XMARK_ORIGIN, 3-73
ATTR_XNAME, 3-69
ATTR_XNAME_LENGTH, 3-70
ATTR_XOFFSET, 3-89, 3-90
ATTR_XPRECISION, 3-70
ATTR_XRESOLUTION, 3-89, 3-90
ATTR_XREVERSE, 3-73
ATTR_XSCALING, 3-57
ATTR_XUSE_LABEL_STRINGS, 3-69
ATTR_XYLABEL_BOLD, 3-70
ATTR_XYLABEL_COLOR, 3-70
ATTR_XYLABEL_FONT, 3-70
ATTR_XYLABEL_FONT_NAME_LENGTH,

3-70
ATTR_XYLABEL_ITALIC, 3-70
ATTR_XYLABEL_POINT_SIZE, 3-71
ATTR_XYLABEL_STRIKEOUT, 3-71
ATTR_XYLABEL_UNDERLINE, 3-71
ATTR_XYNAME_BOLD, 3-71
ATTR_XYNAME_COLOR, 3-71
ATTR_XYNAME_FONT, 3-71
ATTR_XYNAME_FONT_NAME_LENGTH,

3-71
ATTR_XYNAME_ITALIC, 3-71
ATTR_XYNAME_POINT_SIZE, 3-71
ATTR_XYNAME_STRIKEOUT, 3-71
ATTR_XYNAME_UNDERLINE, 3-71
ATTR_YAXIS_GAIN, 3-69
ATTR_YAXIS_OFFSET, 3-70
ATTR_YAXIS_REVERSE, 3-70
ATTR_YCOORD_AT_ORIGIN, 3-57

Index

© National Instruments Corporation Index-5 LabWindows/CVI User Interface Reference

ATTR_YDIVISIONS, 3-71
ATTR_YENG_UNITS, 3-71
ATTR_YFORMAT, 3-71
ATTR_YGRID_VISIBLE, 3-72
ATTR_YLABEL_VISIBLE, 3-72
ATTR_YMAP_MODE, 3-72
ATTR_YMARK_ORIGIN, 3-73
ATTR_YNAME, 3-72
ATTR_YNAME_LENGTH, 3-72
ATTR_YOFFSET, 3-89, 3-90
ATTR_YPRECISION, 3-72
ATTR_YRESOLUTION, 3-89, 3-90
ATTR_YSCALING, 3-57
ATTR_YUSE_LABEL_STRINGS, 3-70
ATTR_ZPLANE_POSITION, 3-16, 3-33
attributes

canvas controls, 3-56 to 3-59
ATTR_DRAW_POLICY values

(table), 3-57
ATTR_OVERLAPPED_POLICY

values (table), 3-58
ATTR_PEN_MODE values

(table), 3-58
list of attributes (table), 3-56 to 3-57
pixel values for

ATTR_PEN_PATTERN, 3-58
to 3-59

controls
ATTR_CHECK_RANGE values

(table), 3-51
control data types for

ATTR_DATA_TYPE (table), 3-50
control styles for

ATTR_CTRL_STYLE (table),
3-46 to 3-50

list of attributes (table), 3-32 to 3-33
numeric formats for

ATTR_FORMAT (table), 3-51
graph and strip chart controls

cursor styles for
ATTR_CROSSHAIR_STYLE
(table), 3-78

discussion of specific attributes, 3-77
to 3-80

line styles for ATTR_LINE_STYLE
(table), 3-79

list of attributes (table), 3-68 to 3-77
plot origins, 3-80 to 3-81
plot styles for ATTR_PLOT_STYLE

(table), 3-80
styles for

ATTR_CURSOR_POINT_STYLE
and
ATTR_TRACE_POINT_STYLE
(table), 3-78 to 3-79

two Y axes, 3-81
values for ATTR_PLOT_ORIGIN

(table), 3-81
hard copy, 3-89
menu bars

constants for masking three bit fields
(table), 3-28

menu and menu item attributes
(table), 3-24 to 3-25

modifiers and virtual keys for
shortcut keys (table), 3-26 to 3-27

panels
color values (table), 3-17 to 3-18
fonts, 3-20 to 3-21
frame style values, 3-18
geometric attributes (table), 3-18
list of attributes (table), 3-12 to 3-16
values and cursor styles for

ATTR_MOUSE-CURSOR
(table), 3-19

picture controls, 3-52 to 3-53
appearanc3, 3-51
giving picture controls visual

impact, 3-51
system attributes, 3-86 to 3-88

list of attributes (table), 3-86
reporting load failures, 3-87 to 3-88
unsafe timer events, 3-86 to 3-87

timer controls, 3-64 to 3-65
autoscaling of graph plots, 3-82 to 3-83
axis label string functions

ClearAxisItems, 4-46 to 4-47
DeleteAxisItem, 4-55 to 4-56
function tree, 4-5
GetAxisItem, 4-82 to 4-83
GetAxisItemLabelLength, 4-83 to 4-84
GetNumAxisItems, 4-111

Index

LabWindows/CVI User Interface Reference Index-6 © National Instruments Corporation

InsertAxisItem, 4-128 to 4-129
ReplaceAxisItem, 4-213 to 4-214

axis scale functions
function tree, 4-5
GetAxisRange, 4-84 to 4-85
GetAxisScalingMode, 4-86 to 4-87
SetAxisRange, 4-224 to 4-226
SetAxisScalingMode, 4-223 to 4-224

B

batch drawing, canvas controls, 3-54
binary switch controls

definition, 1-12
illustration, 1-12

bitmap, offscreen, 3-55
bitmap functions

AllocBitmapData, 4-12 to 4-13
DiscardBitmap, 4-61
function tree, 4-8
GetBimapData, 4-87 to 4-89
GetBitmapFromFile, 4-89 to 4-90
GetBitmapInfo, 4-90 to 4-91
GetCtrlBitmap, 4-92 to 4-93
GetCtrlDisplayBitmap, 4-94 to 4-95
GetPanelDisplayBitmap, 4-114 to 4-116
NewBitmap, 4-151 to 4-153
SetCtrlBitmap, 4-227 to 4-228

bitmap objects, 3-62 to 3-63
creating, extracting, or discarding, 3-62
displaying or copying, 3-63
retrieving image data, 3-63
Windows metafiles, 3-62 to 3-63

Bottom Edges option
Alignment command, 2-21
Distribution command, 2-21

Bring Panel to Front command, View
menu, 2-19

bulletin board support, B-1

C

Callback Function field
Edit Control dialog box, 2-11
Edit Menu Bar dialog box, 2-9

Edit Panel dialog box, 2-10
callback functions

assigning
controls, 1-3
User Interface Editor vs.

programmatic method, 3-2
associated with close controls

(note), 2-25
avoiding longjmp function (note), 3-7
diagram of callback function

concept, 3-5
example program, 5-3
function reference

function tree, 4-6 to 4-7
InstallCtrlCallback, 4-133 to 4-134
InstallMainCallback, 3-92 to 3-93,

4-135 to 4-136
InstallMenuCallback, 4-136 to 4-137
InstallMenuDimmerCallback, 4-137

to 4-138
InstallPanelCallback, 4-138 to 4-139
PostDeferredCall, 3-94, 4-189

to 4-190
generating code for

All Callbacks command, 2-27
Control Callbacks command, 2-28
Main Function command, 2-26

to 2-27
Menu Callbacks command, 2-28
Panel Callbacks command, 2-28

precedence of callback functions, 3-91
to 3-92

processing events
control events, 3-31
menu bar events, 3-23
panel events, 3-11

pseudocode example, 3-6 to 3-7
purpose and use, 1-2
responding to user interface events, 3-5

to 3-7
swallowing events, 3-92
timer callbacks, 3-64
using InstallMainCallback, 3-92 to 3-93
windows interrupt support functions

function tree, 4-7
GetCVITaskHandle, 4-98

Index

© National Instruments Corporation Index-7 LabWindows/CVI User Interface Reference

GetCVIWindowHandle, 4-98 to 4-99
RegisterWinMsgCallback, 4-210

to 4-212
UnRegisterWinMsgCallback, 4-229

canvas controls, 3-53 to 3-59
attributes, 3-56 to 3-59

ATTR_DRAW_POLICY values
(table), 3-57

ATTR_OVERLAPPED_POLICY
values (table), 3-58

ATTR_PEN_MODE values
(table), 3-58

list of attributes (table), 3-56 to 3-57
pixel values for

ATTR_PEN_PATTERN, 3-58
to 3-59

background color, 3-55
batch drawing, 3-54
canvas coordinate system, 3-54
clipping, 3-55
example programs

canvas benchmark program, 5-6
drawing on canvas control, 5-6
pie chart, 5-6
using canvas control as drawing port

for mouse, 5-6
functions for drawing on canvas, 3-53

to 3-54
offscreen bitmap, 3-55
pens, 3-55
pixel values, 3-56
purpose and use, 1-21

canvas functions
CanvasClear, 4-15 to 4-16
CanvasDefaultPen, 4-16 to 4-17
CanvasDimRect, 4-17 to 4-18
CanvasDrawArc, 4-18 to 4-19
CanvasDrawBitmap, 4-20 to 4-21
CanvasDrawLine, 4-21 to 4-22
CanvasDrawLineTo, 4-23
CanvasDrawOval, 4-24 to 4-25
CanvasDrawPoint, 4-25
CanvasDrawPoly, 4-26 to 4-27
CanvasDrawRectangle, 4-27 to 4-28
CanvasDrawRoundedRectangle, 4-28

to 4-29

CanvasDrawText, 4-30 to 4-31
CanvasDrawTextAtPoint, 4-32 to 4-33
CanvasEndBatchDrawing, 4-34
CanvasGetClipRect, 4-35
CanvasGetPenPosition, 4-35 to 4-36
CanvasGetPixel, 4-36 to 4-37
CanvasGetPixels, 4-37 to 4-39
CanvasInvertRect, 4-39
CanvasScroll, 4-40 to 4-41
CanvasSetClipRect, 4-41 to 4-42
CanvasSetPenPosition, 4-42
CanvasStartBatchDraw, 4-43 to 4-44
CanvasUpdate, 4-44 to 4-45
function tree, 4-5 to 4-6

Case Sensitive option, Find UIR Objects
dialog box, 2-18

Center Label command, Arrange menu, 2-22
Checked field, Edit Menu Bar dialog

box, 2-9
CheckListItem function, 4-45 to 4-46
child panel

example program, 5-4
purpose and use, 3-11

ClearAxisItems function, 4-46 to 4-47
ClearListCtrl function, 4-47
ClearStripChart function, 4-47 to 4-48
clipboard functions

ClipboardGetBitmap, 4-48 to 4-49
ClipboardGetText, 4-49
ClipboardPutBitmap, 4-49 to 4-50
ClipboardPutText, 4-50
example program, 5-6
function tree, 4-8

clipping, canvas controls, 3-55
Close command, File menu, 2-4
code. See source files.
code generation, automatic. See

CodeBuilder.
Code menu, User Interface Editor

Generate submenu, 2-24 to 2-28
All Callbacks command, 2-27
All Code command, 2-25 to 2-26
Control Callbacks command, 2-28
enabled commands (note), 2-24
Generate Code dialog box, 2-24
illustration, 2-24

Index

LabWindows/CVI User Interface Reference Index-8 © National Instruments Corporation

Main Function command, 2-26
to 2-27

Menu Callbacks command, 2-28
Panel Callback command, 2-28

illustration, 2-23
Preferences command, 2-20 to 2-30

Always Append Code to End
option, 2-30

Default Control Events option, 2-30
Default Panel Events option, 2-30

Set Target File command, 2-23 to 2-24
View command, 2-28 to 2-29

CodeBuilder
creating source code for GUI, 1-4 to 1-5
overview, 2-2 to 2-3

Color Preferences section, User Interface
Editor Preferences dialog box, 2-32

Coloring tool, 2-2
colors

background color for canvas
controls, 3-55

common color values for panel attributes
(table), 3-17 to 3-18

example program
changing image colors, 5-6
colors in list boxes, 5-5

functions accepting RGB color
values, 4-10

generating with MakeColor function,
4-146 to 4-147

RGB color values for drawing three-
dimensional objects, 4-79

command button controls
definition, 1-11
illustration, 1-11
operating, 1-11

commit events
control modes for generating, 1-3 to 1-4

hot, 1-4
indicator, 1-3
normal, 1-3
validate, 1-4

definition, 1-2
placed in GetUserEvent queue after

being sent to callbacks, 3-92
ConfigurePrinter function, 4-51

confirm pop-up panel, 1-23
ConfirmPopup function, 4-51 to 4-52
Constant Name Assignment section, User

Interface Editor Preferences dialog box,
2-32 to 2-33

Constant Name field
Edit Control dialog box, 2-11
Edit Menu Bar dialog box, 2-8 to 2-9
Edit Panel dialog box, 2-9

constant names, assigning
Assign Missing Constants command,

Options menu, 2-33
constant name separator (_), 3-3
constant prefixes, 3-2 to 3-3
controls, 1-3, 3-3
menu bars, 3-3
menu items, 3-3
menus, 3-3
rules for User Interface Editor, 3-2 to 3-

3
User Interface Editor method, 3-2 to 3-3

constant prefix, assigning
menus, 3-3
panels, 3-2 to 3-3

Control Appearance section, Edit
Label/Value Pairs dialog box, 2-13

control attributes. See attributes.
Control Callbacks command, Generate

menu, 2-28
Control command, Edit menu, 2-11 to 2-14.

See also Edit Control dialog box.
Control Coordinates command, Arrange

menu, 2-23
control functions. See also specific types of

control functions.
function reference

DefaultCtrl, 4-54
DiscardCtrl, 4-61 to 4-62
DuplicateCtrl, 4-69 to 4-70
GetActiveCtrl, 4-80
GetCtrlAttribute, 4-91 to 4-92
GetCtrlBoundingRect, 4-93 to 4-94
GetCtrlVal, 4-96 to 4-97
NewCtrl, 4-153 to 4-154
SetActiveCtrl, 4-221
SetCtrlAttribute, 4-226 to 4-227

Index

© National Instruments Corporation Index-9 LabWindows/CVI User Interface Reference

SetCtrlVal, 4-229 to 4-230
programming overview

control attributes. See attributes.
functions applicable to all controls,

3-28 to 3-29
list box and ring control functions,

3-29 to 3-30
processing control events, 3-31

to 3-32
text box functions, 3-30 to 3-31

Control Settings section, Edit Control dialog
box, 2-12

Control Style command, Edit menu, 2-16
Control ZPlane Order command, Arrange

menu, 2-22
controls, 1-7 to 1-21. See also control

functions.
activating, 1-8
assigning callback functions, 1-3
assigning constant names, 1-3, 3-3
attributes. See attributes.
binary switch, 1-12
canvas. See canvas controls.
command button, 1-11
data types, 1-8

for ATTR_DATA_TYPE, 3-50
decorations, 1-16
definition, 1-7
graph. See graph controls.
LED, 1-12
list box, 1-14 to 1-16
numeric, 1-8 to 1-9
picture. See picture controls.
processing control events, 3-31 to 3-32
ring, 1-13 to 1-14
string, 1-9 to 1-10
strip chart. See strip chart controls.
text box, 1-10 to 1-11
text messages, 1-10
timer. See timer controls.
toggle button, 1-11 to 1-12
types of controls, 1-7 to 1-8

Copy command, Edit menu, 2-6
Copy Panel command, Edit menu, 2-6
Create menu, User Interface Editor

illustration, 2-16

Menu Bars command, 2-16
Panel command, 2-16

CreateMetaFont function, 4-52 to 4-53
cursor and mouse functions

function tree, 4-4
GetActiveGraphCursor, 4-80 to 4-81
GetCursorAttribute, 4-97
GetGlobalMouseState, 4-99 to 4-100
GetGraphCursor, 4-100 to 4-101
GetGraphCursorIndex, 4-101
GetMouseCursor, 4-110
GetRelativeMouseState, 4-118 to 4-119
GetWaitCursorState, 4-127
SetActiveGraphCursor, 4-221 to 4-222
SetCursorAttribute, 4-230 to 4-231
SetGraphCursor, 4-233
SetGraphCursorIndex, 4-234
SetMouseCursor, 4-241 to 4-242
SetWaitCursor, 4-248 to 4-249

cursors
cursor styles for

ATTR_CROSSHAIR_STYLE
(table), 3-78

example program, 5-3
keyboard operation

cursor selection (table), 1-17 to 1-18
free-form cursors (table), 1-17

to 1-18
snap-to-point cursors (table), 1-17

to 1-18
mouse operation, 1-18
styles for

ATTR_CURSOR_POINT_STYLE
and ATTR_TRACE_POINT_STYLE
(table), 3-78 to 3-79

values and cursor styles for
ATTR_MOUSE-CURSOR
(table), 3-19

customer communication, xxi, B-1 to B-2
Cut command, Edit menu, 2-6
Cut Panel command, Edit menu, 2-6
CVICALLBACK macro, 3-7

Index

LabWindows/CVI User Interface Reference Index-10 © National Instruments Corporation

D

data types
controls

valid data types, 1-8
values for ATTR_DATA_TYPE

attribute (table), 3-50
plot arrays, 4-11 to 4-12

decorations, 1-16
Default Control Events option, Preferences

command, 2-30
Default Panel Events option, Preferences

command, 2-30
DefaultCtrl function, 4-54
DefaultPanel function, 4-54 to 4-55
Delete command, Edit menu, 2-6
DeleteAxisItem function, 4-44 to 4-56
DeleteGraphPlot function, 4-56 to 4-57
DeleteImage function, 4-58
DeleteListItem function, 4-58 to 4-59
DeleteTextBoxLine function, 4-59
developing graphical user interfaces (GUI).

See graphical user interface (GUI),
building.

Dimmed field, Edit Menu Bar dialog
box, 2-9

DirSelectPopup function, 4-60
DiscardBitmap function, 4-61
DiscardCtrl function, 4-61 to 4-62
DiscardMenu function, 4-62
DiscardMenuBar function, 4-63
DiscardMenuItem function, 4-63
DiscardPanel function, 4-64
DiscardSubMenu function, 4-64
DisplayImageFile function, 4-65
DisplayPanel function, 4-66 to 4-67
DisplayPCXFile function, 4-66
Distribute Vertical Centers command,

Arrange menu, 2-22
Distribution command, Arrange menu, 2-21

to 2-22
dltd

control attributes
ATTR_CHECK_RANGE values

(table), 3-51
documentation

conventions used in manual, xx
organization of manual, xix-xx

DOSColorToRGB function, 4-67 to 4-68
DOSCompatWindow function, 4-68
drawing. See canvas controls; canvas

functions.
DuplicateCtrl function, 4-69 to 4-70
DuplicatePanel function, 4-70 to 4-71

E

Edit button, Find UIR Objects dialog
box, 2-18

Edit Control dialog box
Control Settings section, 2-12
Edit Label/Value Pairs dialog box, 2-12

to 2-13
Quick Edit Window, 2-14
Source Code Connection, 2-11

Edit Label/Value Pairs dialog box
Control Appearance section, 2-13
illustration, 2-12
Label Appearance section, 2-13
purpose and use, 2-13

Edit menu, User Interface Editor
Apply Default Font command, 2-15
Control command, 2-11 to 2-14
Control Style command, 2-16
Copy command, 2-6
Copy Panel command, 2-6
Cut command, 2-6
Cut Panel command, 2-6
Delete command, 2-6
illustration, 2-5
Menu Bars command, 2-7 to 2-9
Panel command, 2-9 to 2-11
Paste command, 2-6
Redo command, 2-5
Set Default Font command, 2-15
Tab Order command, 2-14 to 2-15
Undo command, 2-5
when commands are enabled (note), 2-5

Edit Menu Bar dialog box
available options, 2-8 to 2-9
illustration, 2-8

Index

© National Instruments Corporation Index-11 LabWindows/CVI User Interface Reference

Edit Panel dialog box
Panel Attributes section, 2-10
Quick Edit Window section, 2-10

to 2-11
Source Code Connection section, 2-9

Edit Tab Order dialog box, 2-15
Editing tool, 2-1
electronic technical support, B-1 to B-2
e-mail support, B-2
EmptyMenu function, 4-71
EmptyMenuBar function, 4-71 to 4-72
error conditions, User Interface Library, A-1

to A-6
error reporting, User Interface Library, 4-12
event functions

GetUserEvent, 3-8 to 3-9, 4-125
ProcessDrawEvents, 3-93, 4-195
ProcessSystemEvents, 3-93 to 3-94,

4-195 to 4-196
QueueUserEvent, 4-197
SetIdleEventRate, 3-92 to 3-93, 4-235

event loops
definition, 1-2
example program, 5-4 to 5-5
GetUserEvent function for responding to

events, 3-8 to 3-9
processing events

control events, 3-31 to 3-32
menu bar events, 3-23

event-blocking conditions, 3-86
events

callback functions for responding to
events, 3-5 to 3-7

avoiding longjmp function
(note), 3-7

diagram of callback function
concept, 3-5

pseudocode example, 3-6 to 3-7
commit events

control modes for generating, 1-3
to 1-4

definition, 1-2
placed in GetUserEvent queue after

being sent to callbacks, 3-92
designing, 1-2

event types and information passed to
program (table), 3-4

example program, 5-3
GetUserEvent function (event loop) for

responding to events, 3-8 to 3-9
diagram of event loop concept, 3-8
pseudocode example, 3-8 to 3-9

GOT_FOCUS event, 1-2
LEFT_CLICK event, 1-2
loops. See event loops.
precedence of callback functions, 3-91

to 3-92
processing

control events, 3-31 to 3-32
graph and strip chart events, 3-67

to 3-68
menu bar events, 3-22 to 3-23
panel events, 3-11
ProcessSystemEvents function, 3-93

to 3-94, 4-195 to 4-196
setting idle event rates, 3-92 to 3-93
swallowing events, 3-92
unsafe timer events, 3-86 to 3-87

example programs, 5-1 to 5-6
Exit LabWindows/CVI command, File

menu, 2-4

F

FakeKeystroke function, 3-94, 4-72
fax and telephone technical support, B-2
faxback support, B-1
File menu, User Interface Editor

Add File to Project command, 2-4
Close command, 2-4
Exit LabWindows/CVI command, 2-4
illustration, 2-3
New command, 2-4
Open command, 2-4
Print command, 2-4
Read Only command, 2-4
Save command, 2-4
Save All command, 2-4
Save As command, 2-4
Save Copy As command, 2-4

Index

LabWindows/CVI User Interface Reference Index-12 © National Instruments Corporation

file select pop-up panel, 1-23 to 1-24
FileSelectPopup function, 4-72 to 4-74
Find button, Find UIR Objects dialog

box, 2-18
Find Next button, Find UIR Objects dialog

box, 2-19
Find Prev button, Find UIR Objects dialog

box, 2-18
Find UIR Objects command, View menu,

2-17 to 2-18
Find UIR Objects dialog box

Case Sensitive option, 2-18
Edit button, 2-18
Find button, 2-18
Find Next button, 2-18
Find Prev button, 2-18
illustration, 2-17
Regular Expression option, 2-18
search criteria in Search By ring control,

2-17 to 2-18
Stop button, 2-18
Wrap option, 2-18

fonts
CreateMetaFont function, 4-52 to 4-53
FontSelectPopup function, 4-74 to 4-77
functions using fonts as input

parameters, 4-10
metafonts

included with
LabWindows/CVI, 1-25

typefaces native to each
platform, 1-25

panel attributes
host fonts, 3-21
metafonts included with

LabWindows/CVI, 3-21
platform independent fonts on PCs

and UNIX, 3-20
platform independent metafonts on

PCs and UNIX, 3-20 to 3-21
user defined metafonts, 3-21
valid font values (table), 3-20

setting and applying default fonts, 2-15
typefaces native to each platform, 1-25

FontSelectPopup function, 4-74 to 4-77
FTP support, B-2

G

Generate All Code dialog box, 2-25
Generate Code dialog box, 2-24
Generate Main Function dialog box, 2-26
Generate menu, 2-24 to 2-28

All Callbacks command, 2-27
All Code command, 2-25 to 2-26
Control Callbacks command, 2-28
enabled commands (note), 2-24
Generate Code dialog box, 2-24
illustration, 2-24
Main Function command, 2-26 to 2-27
Menu Callbacks command, 2-28
Panel Callback command, 2-28

generating code automatically. See
CodeBuilder.

generic message pop-up panel, 1-22
GenericMessagePopup function, 4-77

to 4-79
geometric panel attributes, 3-18
Get3dBorderColors function, 4-79 to 4-80
GetActiveCtrl function, 4-80
GetActiveGraphCursor function, 4-80

to 4-81
GetActivePanel function, 4-81
GetAxisItem function, 4-82 to 4-83
GetAxisItemLabelLength function, 4-83

to 4-84
GetAxisRange function, 4-84 to 4-85
GetAxisScalingMode function, 4-86 to 4-87
GetBimapData function, 4-87 to 4-89
GetBitmapFromFile function, 4-89 to 4-90
GetBitmapInfo function, 4-90 to 4-91
GetCtrlAttribute function, 4-91 to 4-92
GetCtrlBitmap function, 4-92 to 4-93
GetCtrlBoundingRect function, 4-93 to 4-94
GetCtrlDisplayBitmap function, 4-94

to 4-95
GetCtrlIndex function, 4-95 to 4-96
GetCtrlVal function, 4-96 to 4-97
GetCursorAttribute function, 4-97
GetCVITaskHandle function, 4-98
GetCVIWindowHandle function, 4-98

to 4-99

Index

© National Instruments Corporation Index-13 LabWindows/CVI User Interface Reference

GetGlobalMouseState function, 4-99
to 4-100

GetGraphCursor function, 4-100 to 4-101
GetGraphCursorIndex function, 4-101
GetImageBits function, 4-102 to 4-104
GetImageInfo function, 4-105 to 4-106
GetIndexFromValue function, 4-106

to 4-107
GetLabelFromIndex function, 4-107
GetLabelLengthFromIndex function, 4-108
GetListItemImage function, 4-108 to 4-109
GetMenuBarAttribute function, 4-109

to 4-110
GetMouseCursor function, 4-110
GetNumAxisItems function, 4-111
GetNumCheckedItems function, 4-112
GetNumListItems function, 4-112 to 4-113
GetNumTextBoxLines function, 4-113

to 4-114
GetPanelAttribute function, 4-114
GetPanelDisplayBitmap function, 4-114

to 4-116
GetPanelMenuBar function, 4-116
GetPlotAttribute function, 4-116 to 4-117
GetPrintAttribute function, 4-117 to 4-118
GetRelativeMouseState function, 4-118

to 4-119
GetScreenSize function, 4-119
GetSharedMenuBarEventPanel function,

4-119 to 4-120
GetSleepPolicy function, 4-120
GetSystemAttribute function, 4-120

to 4-121
GetSystemPopupsAttribute function, 4-121
GetTextBoxLine function, 4-121 to 4-122
GetTextBoxLineLength function, 4-122

to 4-123
GetTextDisplaySize function, 4-123
GetTraceAttribute function, 4-123 to 4-124
GetUILErrorString function, 4-124
GetUserEvent function. See also event

loops.
description, 4-125
purpose, 3-92
responding to events, 3-8 to 3-9

diagram of event loop concept, 3-8

pseudocode example, 3-8 to 3-9
GetValueFromIndex function, 4-126
GetValueLengthFromIndex function, 4-126

to 4-127
GetWaitCursorState function, 4-127
GOT_FOCUS event, 1-2
graph control functions

AllocImageBits, 4-14 to 4-15
ClearStripChart, 4-47 to 4-48
DeleteGraphPlot function, 4-56 to 4-57
DeleteImage, 4-58
DisplayImageFile, 4-65
DisplayPCXFile, 4-66
function tree, 4-4
GetActiveGraphCursor, 4-80 to 4-81
GetAxisRange, 4-84 to 4-85
GetCursorAttribute, 4-97
GetGraphCursor, 4-100 to 4-101
GetGraphCursorIndex, 4-101
GetImageBits, 4-102 to 4-104
GetImageInfo, 4-105 to 4-106
GetPlotAttribute, 4-116 to 4-117
GetTraceAttribute, 4-123 to 4-124
graph and strip chart controls, 3-66

to 3-67
PlotArc, 4-160 to 4-162
PlotBitMap, 4-162 to 4-163
PlotIntensity, 4-163 to 4-166
PlotLine, 4-166 to 4-167
PlotOval, 4-167 to 4-168
PlotPoint, 4-169
PlotPolygon, 4-170 to 4-171
PlotRectangle, 4-171 to 4-172
PlotScaledIntensity, 4-173 to 4-176
PlotStripChart, 4-176 to 4-178
PlotStripChartPoint, 4-178 to 4-179
PlotText, 4-179 to 4-180
PlotWaveform, 4-181 to 4-182
PlotX, 4-183 to 4-184
PlotXY, 4-184 to 4-185
PlotY, 4-185 to 4-187
RefreshGraph, 4-210
ResetTimer, 4-216 to 4-217
ResumeTimerCallbacks, 4-217
SetActiveGraphCursor, 4-221 to 4-222
SetAxisRange, 4-224 to 4-226

Index

LabWindows/CVI User Interface Reference Index-14 © National Instruments Corporation

SetCursorAttribute, 4-230 to 4-231
SetGraphCursor, 4-233
SetGraphCursorIndex, 4-234
SetImageBits, 4-236 to 4-238
SetPlotAttribute, 4-244 to 4-245
SetTraceAttribute, 4-247 to 4-248
SuspendTimerCallbacks, 4-249

graph controls. See also graph control
functions.

attributes
cursor styles for

ATTR_CROSSHAIR_STYLE
(table), 3-78

discussion of specific attributes, 3-77
to 3-80

line styles for ATTR_LINE_STYLE
(table), 3-80

list of attributes (table), 3-68 to 3-77
plot origin, 3-80 to 3-81
plot styles for ATTR_PLOT_STYLE

(table), 3-80
styles for

ATTR_CURSOR_POINT_STYLE
and
ATTR_TRACE_POINT_STYLE
(table), 3-78 to 3-79

two Y axes, 3-81
values for ATTR_PLOT_ORIGIN

(table), 3-81
definition, 1-16
example program, 5-3
illustration, 1-16
operating, 1-16 to 1-19
optimizing, 3-82 to 3-85

controlling refresh, 3-83 to 3-84
example canvas benchmark

program, 5-6
memory usage, 3-84 to 3-85
speed, 3-82 to 3-84

processing events, 3-67 to 3-68
zooming and panning on graphs, 1-19

graph cursor functions. See cursor and
mouse functions.

graph cursors. See cursors.
graph plotting and deleting functions

DeleteGraphPlot function, 4-56 to 4-57

GetPlotAttribute, 4-116 to 4-117
PlotArc, 4-160 to 4-162
PlotBitMap, 4-162 to 4-163
PlotIntensity, 4-163 to 4-166
PlotLine, 4-166 to 4-167
PlotOval, 4-167 to 4-168
PlotPoint, 4-169
PlotPolygon, 4-170 to 4-171
PlotRectangle, 4-171 to 4-172
PlotText, 4-179 to 4-180
PlotWaveform, 4-181 to 4-182
PlotX, 4-183 to 4-184
PlotXY, 4-184 to 4-185
PlotY, 4-185 to 4-187
RefreshGraph, 4-210
SetPlotAttribute, 4-244 to 4-245

graph pop-up panel, 1-24
graphical user interface (GUI)

building. See graphical user interface
(GUI), building.

components, 1-1
decorations, 1-16
fonts, 1-25
illustration, 1-1
pop-up panels, 1-21 to 1-24

graphical user interface (GUI), building. See
also User Interface Editor.

assigning constant names in User
Interface Editor, 3-2 to 3-3

bitmap objects, 3-62 to 3-63
creating, extracting, or

discarding, 3-62
displaying or copying, 3-63
retrieving image data, 3-63
Windows metafiles, 3-62 to 3-63

canvas controls, 3-53 to 3-59
attributes, 3-56 to 3-59
background color, 3-55
batch drawing, 3-54
canvas coordinate system, 3-54
clipping, 3-55
functions for drawing on canvas,

3-53 to 3-54
offscreen bitmap, 3-55
pens, 3-55
pixel values, 3-56

Index

© National Instruments Corporation Index-15 LabWindows/CVI User Interface Reference

control functions
for all controls, 3-28 to 3-29
list boxes and rings, 3-29 to 3-30
text boxes, 3-30 to 3-31

controlling the interface
basic methods, 1-2
callback functions, 3-5 to 3-7
GetUserEvent function (event loop),

3-8 to 3-9
User Interface Editor vs.

programmatic method, 3-2
user interface events, 3-3 to 3-9

controls
attributes, 3-32 to 3-33
callback functions, 3-31
event loops, 3-31 to 3-32
processing events, 3-31 to 3-32

development procedure, 3-1
events, 1-2

callback functions for responding to
events, 3-5 to 3-7

control modes for generating commit
events, 1-3 to 1-4

event types and information passed
to program (table), 3-4

GetUserEvent function (event loop)
for responding to events, 3-8 to 3-9

example program, 5-4
general guidelines, 3-1
generating hard copy output

functions, 3-88
hard copy attributes, 3-89 to 3-91

graph and strip chart controls
attributes, 3-68 to 3-80
functions, 3-65 to 3-67
processing events, 3-67 to 3-68

menu bars, 1-6 to 1-7
attributes, 3-24 to 3-25
functions, 3-21 to 3-22
processing events, 3-22 to 3-23

panels
attributes (table), 3-12 to 3-16
functions, 3-9 to 3-10
processing events, 3-11

picture controls, 3-51 to 3-53
attributes, 3-52 to 3-53

image formats (table), 3-52
simple picture control, 3-52

pop-up panels, 3-85 to 3-86
recompiling program after saving .uir

file, 3-1
rect and point structures, 3-59 to 3-61

comparing or obtaining values, 3-61
functions and macros for

creating, 3-60
modifying, 3-60 to 3-61

source code connection, 1-3
special functions

FakeKeystroke, 3-94
InstallMainCallback, 3-92 to 3-93
PostDeferredCall, 3-94
precedence of callback functions,

3-91 to 3-92
ProcessSystemEvents, 3-93 to 3-94,

4-195 to 4-196
QueueUserEvent, 3-94
QuitUserInterface, 3-94
RunUserInterface, 3-91
SetIdleEventRate, 3-92 to 3-93
swallowing events, 3-92

system attributes, 3-86 to 3-88
list of attributes (table), 3-86
reporting load failures, 3-87 to 3-88
unsafe timer events, 3-86 to 3-87

timer controls, 3-63 to 3-65
attributes, 3-64 to 3-65
operations, 3-65
timer callbacks, 3-64
timer control functions, 3-63 to 3-65

GUI. See graphical user interface (GUI).

H

hard copy. See also printing functions.
attributes (table), 3-89
compatible printers, 4-9
configuring devices, 4-9 to 4-10
discussion of specific attributes, 3-90

to 3-91
functions for generating, 3-88
limitations with UNIX (note), 3-90

Index

LabWindows/CVI User Interface Reference Index-16 © National Instruments Corporation

obtaining output, 4-9
values for ATTR_COLOR_MODE

(table), 3-91
header files

created by saving .uir file in User
Interface Editor, 1-3

previewing, 2-19
HidePanel function, 4-128
hierarchy buttons, Edit Menu Bar dialog

box, 2-9
Horizontal Centers option

Alignment command, 2-20
Distribution command, 2-22

Horizontal Compress option, Distribution
command, 2-22

Horizontal Gap option, Distribution
command, 2-22

host fonts, 3-21
hot control mode for commit events

definition, 1-4
rules for generation of commit

events, 1-4
hot keys. See shortcut keys.

I

IDs for interface objects. See constant
names, assigning.

images. See picture control functions;
picture controls.

immediate action menus, 1-6
include files

include file for User Interface Library
(userint.h), 4-12

required for referencing resource IDs
and callback functions, 3-2

updating by recompiling programs, 3-1
indicator control mode for commit

events, 1-3
Insert New Item field, Edit Menu Bar dialog

box, 2-9
Insert Separator field, Edit Menu Bar dialog

box, 2-9
InsertAxisItem function, 4-128 to 4-129
InsertListItem function, 4-130 to 4-131

InsertSeparator function, 4-132
InsertTextBoxLine function, 4-132 to 4-133
InstallCtrlCallback function, 4-133 to 4-134
InstallMainCallback function, 3-92 to 3-93,

4-135 to 4-136
InstallMenuCallback function, 4-136

to 4-137
InstallMenuDimmerCallback function,

4-137 to 4-138
InstallPanelCallback function, 4-138

to 4-139
InstallPopup function, 4-139
intensity plot sample program, 5-5
IsListItemChecked function, 4-140
Item field, Edit Menu Bar dialog box, 2-8

K

key modifiers. See modifier key.
keyboard input, example program, 5-5

L

Label Appearance section, Edit Label/Value
Pairs dialog box, 2-13

Labeling tool, 2-2
Label/Value Pairs button, 2-12. See also

Edit Label/Value Pairs dialog box.
LabWindows for DOS compatibility

functions. See LW DOS compatibility
functions.

LED controls, 1-12
Left Edges option

Alignment command, 2-20
Distribution command, 2-22

LEFT_CLICK event, 1-2
Library menu, User Interface Editor, 2-30
line styles for ATTR_LINE_STYLE

(table), 3-79
list box control functions

CheckListItem, 4-45 to 4-46
ClearListCtrl, 4-47
DeleteListItem, 4-58 to 4-59
function tree, 4-3
GetCtrlIndex, 4-95 to 4-96

Index

© National Instruments Corporation Index-17 LabWindows/CVI User Interface Reference

GetIndexFromValue, 4-106 to 4-107
GetLabelFromIndex, 4-107
GetLabelLengthFromIndex, 4-108
GetListItemImage, 4-108 to 4-109
GetNumCheckedItems, 4-112
GetNumListItems, 4-112 to 4-113
GetValueFromIndex, 4-126
GetValueLengthFromIndex, 4-126

to 4-127
InsertListItem, 4-130 to 4-131
IsListItemChecked, 4-140
list of functions, 3-29 to 3-30
ReplaceListItem, 4-214 to 4-215
SetCtrlIndex, 4-229
SetListItemImage, 4-240

list box controls. See also Edit Label/Value
Pairs dialog box.

definition, 1-14
example program, 5-4, 5-5
illustration, 1-14
operating, 1-15 to 1-16

load failures, reporting, 3-87 to 3-88
Load From Text Format command, Options

menu, 2-34
LoadMenuBar function, 4-140 to 4-141
LoadMenuBarEx function, 4-142 to 4-143
LoadPanel function, 4-143 to 4-145
LoadPanelEx function, 4-145 to 4-146
longjmp function, avoiding in callback

functions (note), 3-7
LW DOS compatibility functions

ConfigurePrinter, 4-51
DisplayPCXFile, 4-66
DOSColorToRGB, 4-67 to 4-68
DOSCompatWindow, 4-68
function tree, 4-9
GetUILErrorString, 4-124

M

Main Function command, Generate menu,
2-26 to 2-27

MakeColor function, 4-146 to 4-147
MakePoint function, 4-148
MakeRect function, 4-148 to 4-149

manual. See documentation.
memory usage, optimizing, 3-84 to 3-85
Menu Bar Constant Prefix field, Edit Menu

Bar dialog box, 2-8
menu bar functions. See also menu

functions; menu item functions.
DiscardMenuBar, 4-63
EmptyMenuBar, 4-71 to 4-72
function tree, 4-2
GetMenuBarAttribute, 4-109 to 4-110
GetPanelMenuBar, 4-116
GetSharedMenuBarEventPanel, 4-119

to 4-120
LoadMenuBar, 4-140 to 4-141
LoadMenuBarEx, 4-142 to 4-143
NewMenuBar, 4-155
programming graphical user interface

(GUI), 3-21 to 3-22
SetMenuBarAttribute, 4-241 to 4-242
SetPanelMenuBar, 4-243

menu bars, 1-6 to 1-7
assigning constant names

constant prefix for menus, 3-3
menu items, 3-3
requirements, 3-3
submenus (note), 3-3

attributes
constants for masking three bit fields

(table), 3-28
menu and menu item attributes

(table), 3-24 to 3-25
modifiers and virtual keys for

shortcut keys (table), 3-26 to 3-27
definition, 1-6
illustration, 1-6
immediate action menus, 1-6
operating, 1-6 to 1-7
processing menu bar events, 3-22 to 3-

23
pull-down menus, 1-6

Menu Bars command
Create menu, 2-16
Edit menu, 2-7 to 2-9

Menu Bars List dialog box. See also Edit
Menu Bar dialog box.

available command buttons, 2-7

Index

LabWindows/CVI User Interface Reference Index-18 © National Instruments Corporation

illustration, 2-7
Menu Callbacks command, Generate

menu, 2-28
menu functions. See also menu bar

functions; menu item functions.
DiscardMenu, 4-62
DiscardSubMenu, 4-64
EmptyMenu, 4-71
example program, 5-3
NewMenu, 4-154 to 4-155
NewSubMenu, 4-160
RunPopupMenu, 4-218 to 4-219

menu item functions. See also menu bar
functions; menu functions.

DiscardMenuItem, 4-63
InsertSeparator, 4-132
NewMenuItem, 4-156 to 4-158

message pop-up panel, 1-22
MessagePopup function, 4-149
metafonts

included with
LabWindows/CVI, 1-25, 3-21

platform independent fonts on PCs and
UNIX, 3-20

typefaces native to each platform, 1-25
user defined metafonts, 3-21

miscellaneous functions
CreateMetaFont, 4-52 to 4-53
Get3dBorderColors, 4-79 to 4-80
GetMouseCursor, 4-110
GetScreenSize, 4-119
GetSystemAttribute, 4-120 to 4-121
GetTextDisplaySize, 4-123
GetWaitCursorState, 4-127
MakeColor, 4-146 to 4-147
SetMouseCursor, 4-241 to 4-242
SetSystemAttribute, 4-226
SetWaitCursor, 4-248 to 4-249

modifier key
attribute values, 3-26, 4-157
representation in source code, 3-26

Modifier Key field, Edit Menu Bar dialog
box, 2-9

mouse functions. See cursor and mouse
functions.

mouse operation of cursors, 1-18

mouse state, example program, 5-5
Move Backward option, Control ZPlane

Order command, 2-22
Move Forward option, Control ZPlane

Order command, 2-22
Move to Back option, Control ZPlane Order

command, 2-22
Move to Front option, Control ZPlane Order

command, 2-22
MultiFileSelectPopup function, 4-150

to 4-151

N

New command, File menu, 2-4
NewBitmap function, 4-151 to 4-153
NewCtrl function, 4-153 to 4-154
NewMenu function, 4-154 to 4-155
NewMenuBar function, 4-155
NewMenuItem function, 4-156 to 4-158
NewPanel function, 4-159 to 4-160
NewSubMenu function, 4-160
Next Panel command, View menu, 2-19
Next Tool command, Options menu, 2-31
normal control mode for commit events, 1-3
numeric controls

definition, 1-8
illustration, 1-8
operating, 1-8 to 1-9

numeric formats for ATTR_FORMAT, 3-51

O

offscreen bitmap, 3-55
Open command, File menu, 2-4
Operate Visible Panels command, Options

menu, 2-31
Operating tool, 2-2
optimizing graph controls, 3-82 to 3-85

controlling refresh, 3-83 to 3-84
example canvas benchmark program, 5-

6
memory usage, 3-84 to 3-85
speed, 3-82 to 3-84

Options menu

Index

© National Instruments Corporation Index-19 LabWindows/CVI User Interface Reference

Project window
Track Include File Dependencies

command, 3-1
User Interface Editor

Assign Missing Constants
command, 2-33

illustration, 2-31
Load From Text Format

command, 2-34
Next Tool command, 2-31
Operate Visible Panels

command, 2-31
Preferences command, 2-32 to 2-33
Save in Text Format command, 2-33

P

Panel Attributes section, Edit Panel dialog
box, 2-10

Panel Callback command, Generate
menu, 2-28

Panel command
Create menu, 2-16
Edit menu, 2-9 to 2-11

panel functions. See also pop-up panel
functions.

DefaultPanel, 4-54 to 4-55
DiscardPanel, 4-64
DisplayPanel, 4-66 to 4-67
DuplicatePanel, 4-70 to 4-71
function tree, 4-2
GetActivePanel, 4-81
GetPanelAttribute, 4-114
HidePanel, 4-128
LoadPanel, 4-143 to 4-145
LoadPanelEx, 4-145 to 4-146
NewPanel, 4-159 to 4-160
programming graphical user interface

(GUI), 3-9 to 3-10
RecallPanelState, 4-198 to 4-199
SavePanelState, 4-220
SetActivePanel, 4-222
SetPanelAttribute, 4-242
SetPanelPos, 4-243 to 4-244
ValidatePanel, 4-250

panels
assigning constant prefix, 3-2 to 3-3
attributes, 3-12 to 3-22

color values (table), 3-17 to 3-18
fonts, 3-20 to 3-21
frame style values, 3-18
geometric attributes (table), 3-18
list of attributes (table), 3-12 to 3-16
programming considerations, 3-17

to 3-20
values and cursor styles for

ATTR_MOUSE-CURSOR
(table), 3-19

child panel role, 3-11
copying or cutting, 2-6
definition, 1-5
Edit Panel dialog box, 2-9 to 2-11
illustration, 1-5
operating, 1-5 to 1-6
processing panel events, 3-11
Show/Hide Panels command, View

menu, 2-19
panning on graphs

definition, 1-19
enabling panning, 1-19

Paste command, Edit menu, 2-6
pen functions

CanvasDefaultPen, 4-16 to 4-17
CanvasGetPenPosition, 4-35 to 4-36
CanvasSetPenPosition, 4-42

pens for canvas controls, 3-55
picture control functions

AllocImageBits, 4-14 to 4-15
DeleteImage, 4-58
DisplayImageFile, 4-65
DisplayPCXFile, 4-66
function tree, 4-5
GetImageBits, 4-102 to 4-104
GetImageInfo, 4-105 to 4-106
SetImageBits, 4-236 to 4-238

picture controls, 3-51 to 3-53
attributes, 3-52 to 3-53

appearance, 3-51
giving picture controls visual

impact, 3-51
definition, 1-20

Index

LabWindows/CVI User Interface Reference Index-20 © National Instruments Corporation

example program, 5-4
image formats (table), 1-20, 3-52
simple picture control, 3-52

pixel functions
CanvasGetPixel, 4-36 to 4-37
CanvasGetPixels, 4-37 to 4-39

pixel values, canvas controls, 3-56
plot array data types, 4-11 to 4-12
plot control functions. See graph control

functions.
plot origin, graph and strip chart controls,

3-80 to 3-81
plot styles for ATTR_PLOT_STYLE

(table), 3-80
PlotArc function, 4-160 to 4-162
PlotBitMap function, 4-162 to 4-163
PlotIntensity function, 4-163 to 4-166
PlotLine function, 4-166 to 4-167
PlotOval function, 4-167 to 4-168
PlotPoint function, 4-169
PlotPolygon function, 4-170 to 4-171
PlotRectangle function, 4-171 to 4-172
PlotScaledIntensity function, 4-173 to 4-176
PlotStripChart function, 4-176 to 4-178
PlotStripChartPoint function, 4-178 to 4-179
PlotText function, 4-179 to 4-180
PlotWaveform function, 4-181 to 4-182
PlotX function, 4-183 to 4-184
PlotXY function, 4-184 to 4-185
PlotY function, 4-185 to 4-187
point functions. See rect and point functions.
point structures. See rect and point

structures.
PointEqual function, 4-187
PointPinnedToRect function, 4-188
PointSet function, 4-188 to 4-189
pop-up menus, User Interface Editor

window, 2-2
pop-up panel functions

ConfirmPopup, 4-51 to 4-52
DirSelectPopup, 4-60
FileSelectPopup function, 4-72 to 4-74
FontSelectPopup, 4-74 to 4-77
function tree, 4-6
GenericMessagePopup, 4-77 to 4-79
GetSystemPopupsAttribute, 4-121

InstallPopup, 4-139
MessagePopup, 4-149
MultiFileSelectPopup, 4-150 to 4-151
PromptPopup, 4-196
RemovePopup, 4-212
SetFontPopupDefaults, 4-231 to 4-233
SetSystemPopupsAttribute, 4-247
WaveformGraphPopup, 4-251
XGraphPopup, 4-252
XYGraphPopup, 4-252 to 4-253
YGraphPopup, 4-253

pop-up panels, 1-21 to 1-24
confirm pop-up panels, 1-23
definition, 1-21
example program, 5-3
file select pop-up panel, 1-23 to 1-24
functions for accessing predefined pop-

up panels, 3-85 to 3-86
generic message pop-up panel, 1-22
graph pop-up panel, 1-24
message pop-up panel, 1-22
programming overview, 3-85 to 3-86
prompt pop-up panel, 1-22

PostDeferredCall function, 4-189 to 4-190
precedence of callback functions, 3-91

to 3-92
Preferences command

Code menu, 2-29 to 2-30
Always Append Code to End

option, 2-30
Default Control Events option, 2-30
Default Panel Events option, 2-30
Preferences menu (illustration), 2-29

Options menu, 2-31 to 2-34. See also
User Interface Editor Preferences
dialog box.

Preview User Interface Header File
command, View menu, 2-19

Previous Panel command, View menu, 2-19
Print command, File menu, 2-4
PrintCtrl function, 4-190 to 4-191
printing functions

GetPrintAttribute, 4-117 to 4-118
PrintCtrl, 4-190 to 4-191
PrintPanel, 4-191 to 4-193
PrintTextBuffer, 4-193 to 4-194

Index

© National Instruments Corporation Index-21 LabWindows/CVI User Interface Reference

PrintTextFile, 4-194 to 4-195
SetPrintAttribute, 4-245

printing hardcopy. See hard copy.
PrintPanel function, 4-191 to 4-193
PrintTextBuffer function, 4-193 to 4-194
PrintTextFile function, 4-194 to 4-195
ProcessDrawEvents function, 3-93, 4-195
ProcessSystemEvents function, 3-93 to 3-

94, 4-195 to 4-196
program shell, building. See CodeBuilder.
programming examples, 5-1 to 5-6
programming graphical user interfaces. See

graphical user interface (GUI), building.
prompt pop-up panel, 1-22
PromptPopup function, 4-196
pull-down menus, 1-6
push button controls. See command button

controls.

Q

QueueUserEvent function, 4-197
Quick Edit Window

Edit Control dialog box, 2-14
Edit Panel dialog box, 2-10 to 2-11

QuitUserInterface function
definition, 3-94
description, 4-197 to 4-198

R

Read Only command, File menu, 2-4
RecallPanelState function, 4-198 to 4-199
rect and point functions

function tree, 4-7 to 4-8
MakePoint, 4-148
MakeRect, 4-148 to 4-149
PointEqual, 4-187
PointPinnedToRect, 4-188
PointSet, 4-188 to 4-189
RectBottom, 4-199
RectCenter, 4-199 to 4-200
RectContainsRect, 4-200
RectEmpty, 4-201 to 4-203
RectEqual, 4-202

RectGrow, 4-202 to 4-203
RectIntersection, 4-203 to 4-204
RectMove, 4-204
RectOffset, 4-204 to 4-205
RectRight, 4-205
RectSameSize, 4-206
RectSet, 4-206 to 4-207
RectSetBottom, 4-207
RectSetCenter, 4-207 to 4-208
RectSetFromPoints, 4-208
RectSetRight, 4-208
RectUnion, 4-209

rect and point structures, 3-59 to 3-61
comparing or obtaining values, 3-61
functions and macros for creating, 3-60
modifying, 3-60 to 3-61
purpose and use, 3-59

Redo command, Edit menu, 2-5
refresh rate for graphs, 3-83 to 3-84
RefreshGraph function, 4-210
RegisterWinMsgCallback function, 4-210

to 4-212
Regular Expression option, Find UIR

Objects dialog box, 2-18
RemovePopup function, 4-212
ReplaceAxisItem function, 4-213 to 4-214
ReplaceListItem function, 4-214 to 4-215
ReplaceTextBoxLine function, 4-215
reporting load failures, 3-87 to 3-88
ResetTextBox function, 4-216
ResetTimer function, 4-216 to 4-217
resource ID

controls, 2-11
menu bar, 2-8
panels, 2-9

ResumeTimerCallbacks function, 4-217
RGB colors. See colors.
Right Edges option

Alignment command, 2-20
Distribution command, 2-22

ring controls. See also Edit Label/Value
Pairs dialog box.

control functions, 3-29 to 3-30
definition, 1-13
operating, 1-13 to 1-14
pop-up format (illustration), 1-13

Index

LabWindows/CVI User Interface Reference Index-22 © National Instruments Corporation

Run menu, User Interface Editor, 2-30
RunPopupMenu function, 4-218 to 4-219
RunUserInterface function

description, 4-219 to 4-220
purpose, 3-91

S

sample programs, 5-1 to 5-6
Save command, File menu, 2-4
Save All command, File menu, 2-4
Save As command, File menu, 2-4
Save Copy As command, File menu, 2-4
Save in Text Format command, Options

menu, 2-33
SavePanelState function, 4-220
scale functions. See axis scale functions.
Set Default Font command, Edit menu, 2-15
Set Target File command, Code menu, 2-23

to 2-24
Set Target File dialog box, 2-23 to 2-24
SetActiveCtrl function, 4-221
SetActiveGraphCursor function, 4-221

to 4-222
SetActivePanel function, 4-222
SetAxisRange function, 4-224 to 4-226
SetAxisScalingMode function, 4-223

to 4-224
SetCtrlAttribute function, 4-226 to 4-227
SetCtrlBitmap function, 4-227 to 4-228
SetCtrlIndex function, 4-229
SetCtrlVal function, 4-229 to 4-230
SetCursorAttribute function, 4-230 to 4-231
SetFontPopupDefaults function, 4-231

to 4-233
SetGraphCursor function, 4-233
SetGraphCursorIndex function, 4-234
SetIdleEventRate function, 3-92

to 3-93, 4-235
SetImageBits function, 4-236 to 4-238
SetInputMode function, 4-239
SetListItemImage function, 4-240
SetMenuBarAttribute function, 4-241

to 4-242
SetMouseCursor function, 4-241 to 4-242

SetPanelAttribute function, 4-242
SetPanelMenuBar function, 4-243
SetPanelPos function, 4-243 to 4-244
SetPlotAttribute function, 4-244 to 4-245
SetPrintAttribute function, 4-245
SetSleepPolicy function, 4-245 to 4-246
SetSystemAttibute function, 4-226
SetSystemPopupsAttribute function, 4-247
SetTraceAttribute function, 4-247 to 4-248
SetWaitCursor function, 4-248 to 4-249
shells, building. See CodeBuilder.
Shortcut Key field, Edit Menu Bar dialog

box, 2-9
shortcut keys

constant for masking three bit fields
(table), 3-28

functions using shortcut key values as
input parameters, 4-11

producing (example), 4-157
values for modifier keys and virtual

keys, 3-26 to 3-27, 4-157 to 4-158
Show/Hide Panels command, View

menu, 2-19
skeleton code

creating with CodeBuilder, 1-4 to 1-5
definition, 2-2
function skeletons, 2-26
placement in target file, 2-24, 2-26

smoothing graph updating, 3-82
Source Code Connection

Edit Control dialog box, 2-11
Edit Panel dialog box, 2-9

source files
connecting code with graphical user

interface, 1-3
creating with CodeBuilder, 1-4 to 1-5,

2-2 to 2-3
speed, optimizing

ATTR_SMOOTH_UPDATE, 3-82
example canvas benchmark program, 5-

6
VAL_AUTO_SCALE, 3-82 to 3-83

standard I/O example program, 5-3
string controls

definition, 1-9
illustration, 1-9

Index

© National Instruments Corporation Index-23 LabWindows/CVI User Interface Reference

operating, 1-9 to 1-10
strip chart controls

attributes
cursor styles for

ATTR_CROSSHAIR_STYLE
(table), 3-78

discussion of specific attributes, 3-77
to 3-80

line styles for ATTR_LINE_STYLE
(table), 3-79

list of attributes (table), 3-68 to 3-77
plot styles for ATTR_PLOT_STYLE

(table), 3-80
styles for

ATTR_CURSOR_POINT_STYLE
and
ATTR_TRACE_POINT_STYLE
(table), 3-78 to 3-79

values for ATTR_PLOT_STYLE
(table), 3-80

definition, 1-20
example program, 5-3, 5-5
illustration, 1-20
processing events, 3-67 to 3-68

strip chart trace functions
ClearStripChart, 4-47 to 4-48
function tree, 4-4 to 4-5
GetTraceAttribute, 4-123 to 4-124
list of functions, 3-67
PlotStripChart, 4-176 to 4-178
PlotStripChartPoint, 4-178 to 4-179
SetTraceAttribute, 4-247 to 4-248

SuspendTimerCallbacks function, 4-249
swallowing events, 3-92
system attributes, 3-86 to 3-88

list of attributes (table), 3-86
reporting load failures, 3-87 to 3-88
unsafe timer events, 3-86 to 3-87

T

Tab Order command, Edit menu, 2-14
to 2-15

technical support, B-1 to B-2
text box control functions

DeleteTextBoxLine, 4-59
function tree, 4-4
GetNumTextBoxLines, 4-113 to 4-114
GetTextBoxLine, 4-121 to 4-122
GetTextBoxLineLength, 4-122 to 4-123
InsertTextBoxLine, 4-132 to 4-133
list of functions, 3-30 to 3-31
ReplaceTextBoxLine, 4-215
ResetTextBox, 4-216

text box controls
definition, 1-10
entering text, 1-10 to 1-11
example program, 5-4
illustration, 1-10

text format. See ASCII text format.
text message controls

illustration, 1-10
purpose and use, 1-10

timer control functions
function tree, 4-6
programming with timer controls, 3-63

to 3-65
ResetTimer, 4-216 to 4-217
ResumeTimerCallbacks, 4-217
SuspendTimerCallbacks, 4-249

timer controls
attributes, 3-64 to 3-65
definition, 1-21
example program, 5-4
illustration, 1-21
operations, 3-65
timer callbacks, 3-64

timer events, unsafe, 3-86 to 3-87
toggle button controls

definition, 1-11
illustration, 1-11
operating, 1-11 to 1-12

Top Edges option
Alignment command, 2-20
Distribution command, 2-21

trace functions. See strip chart trace
functions.

Track include file dependencies option, 3-1

Index

LabWindows/CVI User Interface Reference Index-24 © National Instruments Corporation

U

.uir files, 3-1
Undo command, Edit menu, 2-5
Undo Preferences section, User Interface

Editor Preferences dialog box, 2-32
UnRegisterWinMsgCallback

function, 4-229
unsafe timer events, 3-86 to 3-87
user interface. See graphical user interface

(GUI).
user interface, creating. See graphical user

interface (GUI), building.
User Interface Editor

Arrange menu, 2-20 to 2-23
Code menu, 2-23 to 2-30
Create menu, 2-16
Edit menu, 2-5 to 2-16
File menu, 2-3 to 2-4
Library menu, 2-30
Options menu, 2-31 to 2-34
Run menu, 2-30
View menu, 2-17 to 2-19
Window menu, 2-31

User Interface Editor Preferences dialog box
Color Preferences section, 2-32
Constant Name Assignment section,

2-32 to 2-33
illustration, 2-32
Undo Preferences section, 2-32

User Interface Editor window, 2-1 to 2-3
Coloring tool, 2-2
Editing tool, 2-1
illustration, 2-1
Labeling tool, 2-2
Operating tool, 2-2
popup menus, 2-2
tool bar, 2-1 to 2-2

user interface events. See events.
User Interface Library. See also User

Interface Library functions.
color support, 4-10
error conditions, A-1 to A-6
font support, 4-10
hardcopy output

compatible printers, 4-9

configuring devices, 4-9 to 4-10
obtaining output, 4-9

include file, 4-12
plot array data types, 4-11 to 4-12
reporting errors, 4-12
shortcut keys, 4-11

User Interface Library functions
function panels

bitmap functions, 4-8
callback functions, 4-1, 4-6 to 4-7
canvas functions, 4-5 to 4-6
clipboard functions, 4-8
controls, graphs, and

stripcharts, 4-1, 4-3
function classes, 4-1 to 4-2
LW DOS compatibility, 4-2, 4-9
menu structures, 4-1, 4-2 to 4-3
miscellaneous, 4-2, 4-8
panel functions, 4-1, 4-2
picture functions, 4-5
pop-up panels, 4-1, 4-6
printing, 4-2, 4-7
rectangle and point functions, 4-7

to 4-8
timer functions, 4-6
user interface management, 4-2, 4-7

function reference
AllocBitmapData, 4-12 to 4-13
AllocImageBits, 4-14 to 4-15
CanvasClear, 4-15 to 4-16
CanvasDefaultPen, 4-16 to 4-17
CanvasDimRect, 4-17 to 4-18
CanvasDrawArc, 4-18 to 4-19
CanvasDrawBitmap, 4-20 to 4-21
CanvasDrawLine, 4-21 to 4-22
CanvasDrawLineTo, 4-23
CanvasDrawOval, 4-24 to 4-25
CanvasDrawPoint, 4-25
CanvasDrawPoly, 4-26 to 4-27
CanvasDrawRect, 4-27 to 4-28
CanvasDrawRoundedRect, 4-28

to 4-29
CanvasDrawText, 4-30 to 4-31
CanvasDrawTextAtPoint, 4-32

to 4-33
CanvasEndBatchDraw, 4-34

Index

© National Instruments Corporation Index-25 LabWindows/CVI User Interface Reference

CanvasGetClipRect, 4-35
CanvasGetPenPosition, 4-35 to 4-36
CanvasGetPixel, 4-36 to 4-37
CanvasGetPixels, 4-37 to 4-39
CanvasInvertRect, 4-39
CanvasScroll, 4-40 to 4-41
CanvasSetClipRect, 4-41 to 4-42
CanvasStartBatchDraw, 4-43 to 4-44
CanvasUpdate, 4-44 to 4-45
CheckListItem, 4-45 to 4-46
ClearAxisItems, 4-46 to 4-47
ClearListCtrl, 4-47
ClearStripChart, 4-47 to 4-48
ClipboardGetBitmap, 4-48 to 4-49
ClipboardGetText, 4-49
ClipboardPutBitap, 4-49 to 4-50
ClipboardPutText, 4-50
ConfigurePrinter, 4-51
ConfirmPopup, 4-51 to 4-52
CreateMetaFont, 4-52 to 4-53
DefaultCtrl, 4-54
DefaultPanel, 4-54 to 4-55
DeleteAxisItem, 4-55 to 4-56
DeleteGraphPlot, 4-56 to 4-57
DeleteImage, 4-58
DeleteListItem, 4-58 to 4-59
DeleteTextBoxLine, 4-59
DirSelectPopup, 4-60
DiscardBitmap, 4-61
DiscardCtrl, 4-61 to 4-62
DiscardMenu, 4-62
DiscardMenuBar, 4-63
DiscardMenuItem, 4-63
DiscardPanel, 4-64
DiscardSubMenu, 4-64
DisplayImageFile, 4-65
DisplayPanel, 4-66 to 4-67
DisplayPCXFile, 4-66
DOSColorToRGB, 4-67 to 4-68
DOSCompatWindow, 4-68
DuplicateCtrl, 4-69 to 4-70
DuplicatePanel, 4-70 to 4-71
EmptyMenu, 4-71
EmptyMenuBar, 4-71 to 4-72
FakeKeystroke, 3-94, 4-72
FileSelectPopup, 4-72 to 4-74

FontSelectPopup, 4-74 to 4-77
GenericMessagePopup, 4-77 to 4-79
Get3dBorderColors, 4-79 to 4-80
GetActiveCtrl, 4-80
GetActiveGraphCursor, 4-80 to 4-81
GetActivePanel, 4-81
GetAxisItem, 4-82 to 4-83
GetAxisItemLabelLength, 4-83

to 4-84
GetAxisRange, 4-84 to 4-85
GetAxisScalingMode, 4-86 to 4-87
GetBitInfo, 4-90 to 4-91
GetBitMapData, 4-87 to 4-89
GetBitMapFromFile, 4-89 to 4-90
GetCtrlAttribute, 4-91 to 4-92
GetCtrlBitmap, 4-92 to 4-93
GetCtrlBoundingRect, 4-93 to 4-94
GetCtrlDisplayBitmap, 4-94 to 4-95
GetCtrlIndex, 4-95 to 4-96
GetCtrlVal, 4-96 to 4-97
GetCursorAttribute, 4-97
GetCVITaskHandle, 4-98
GetCVIWindowHandle, 4-98 to 4-99
GetGlobalMouseState, 4-99 to 4-100
GetGraphCursor, 4-100 to 4-101
GetGraphCursorIndex, 4-101
GetImageBits, 4-102 to 4-104
GetImageInfo, 4-105 to 4-106
GetIndexFromValue, 4-106 to 4-107
GetLabelFromIndex, 4-107
GetLabelLengthFromIndex, 4-108
GetListItemImage, 4-108 to 4-109
GetMenuBarAttribute, 4-109

to 4-110
GetMouseCursor, 4-110
GetNumAxisItems, 4-111
GetNumCheckedItems, 4-112
GetNumListItems, 4-112 to 4-113
GetNumTextBoxLines, 4-113

to 4-114
GetPanelAttribute, 4-114
GetPanelDisplayBitmap, 4-114

to 4-116
GetPanelMenuBar, 4-116
GetPlotAttribute, 4-116 to 4-117
GetPrintAttribute, 4-117 to 4-118

Index

LabWindows/CVI User Interface Reference Index-26 © National Instruments Corporation

GetRelativeMouseState, 4-118
to 4-119

GetScreenSize, 4-119
GetSharedMenuBarEventPanel,

4-119 to 4-120
GetSleepPolicy, 4-120
GetSystemAttribute, 4-120 to 4-121
GetSystemPopupsAttribute, 4-121
GetTextBoxLine, 4-121 to 4-122
GetTextBoxLineLength, 4-122

to 4-123
GetTextDisplaySize, 4-123
GetTraceAttribute, 4-123 to 4-124
GetUILErrorString, 4-124
GetUserEvent, 3-8

to 3-9, 3-92, 4-125
GetValueFromIndex, 4-126
GetValueLengthFromIndex, 4-126

to 4-127
GetWaitCursorState, 4-127
HidePanel, 4-128
InsertAxisItem, 4-128 to 4-129
InsertListItem, 4-130 to 4-131
InsertSeparator, 4-132
InsertTextBoxLine, 4-132 to 4-133
InstallCtrlCallback, 4-133 to 4-134
InstallMainCallback, 3-92 to 3-93,

4-135 to 4-136
InstallMenuCallback, 4-136 to 4-137
InstallMenuDimmerCallback, 4-137

to 4-138
InstallPanelCallback, 4-138 to 4-139
InstallPopup, 4-139
IsListItemChecked, 4-140
LoadMenuBar, 4-140 to 4-141
LoadMenuBarEx, 4-142 to 4-143
LoadPanel, 4-143 to 4-145
LoadPanelEx, 4-145 to 4-146
MakeColor, 4-146 to 4-147
MakePoint, 4-148
MakeRect, 4-148 to 4-149
MessagePopup, 4-149
MultiFileSelectPopup, 4-150

to 4-151
NewBitmap, 4-151 to 4-153
NewCtrl, 4-153 to 4-154

NewMenu, 4-154 to 4-155
NewMenuBar, 4-155
NewMenuItem, 4-156 to 4-158
NewPanel, 4-159 to 4-160
NewSubMenu, 4-160
PlotArc, 4-160 to 4-162
PlotBitMap, 4-162 to 4-163
PlotIntensity, 4-163 to 4-166
PlotLine, 4-166 to 4-167
PlotOval, 4-167 to 4-168
PlotPoint, 4-169
PlotPolygon, 4-170 to 4-171
PlotRectangle, 4-171 to 4-172
PlotScaledIntensity, 4-173 to 4-176
PlotStripChart, 4-176 to 4-178
PlotStripChartPoint, 4-178 to 4-179
PlotText, 4-179 to 4-180
PlotWaveform, 4-181 to 4-182
PlotX, 4-183 to 4-184
PlotXY, 4-184 to 4-185
PlotY, 4-185 to 4-187
PointEqual, 4-187
PointPinnedToRect, 4-188
PointSet, 4-188 to 4-189
PostDeferredCall, 3-94, 4-189

to 4-190
PrintCtrl, 4-190 to 4-191
PrintPanel, 4-191 to 4-193
PrintTextBuffer, 4-193 to 4-194
PrintTextFile, 4-194 to 4-195
ProcessDrawEvents, 3-93, 4-195
ProcessSystemEvents, 3-93 to 3-94,

4-195 to 4-196
PromptPopup, 4-196
QueueUserEvent, 3-94, 4-197
QuitUserInterface, 3-94, 4-197

to 4-198
RecallPanelState, 4-198 to 4-199
RectBottom, 4-199
RectCenter, 4-199 to 4-200
RectContainsRect, 4-200
RectEmpty, 4-201 to 4-202
RectEqual, 4-202
RectGrow, 4-202 to 4-203
RectIntersection, 4-203 to 4-204
RectMove, 4-204

Index

© National Instruments Corporation Index-27 LabWindows/CVI User Interface Reference

RectOffset, 4-204 to 4-205
RectRight, 4-205
RectSameSize, 4-206
RectSet, 4-206 to 4-207
RectSetBottom, 4-207
RectSetCenter, 4-207 to 4-208
RectSetFromPoints, 4-208
RectSetRight, 4-209
RectUnion, 4-209
RefreshGraph, 4-210
RegisterWinMsgCallback, 4-210

to 4-212
RemovePopup, 4-212
ReplaceAxisItem, 4-213 to 4-214
ReplaceListItem, 4-214 to 4-215
ReplaceTextBoxLine, 4-215
ResetTextBox, 4-216
ResetTimer, 4-216 to 4-217
ResumeTimerCallbacks, 4-217
RunPopupMenu, 4-218 to 4-219
RunUserInterface, 3-01, 4-219

to 4-220
SavePanelState, 4-220
SetActiveCtrl, 4-221
SetActiveGraphCursor, 4-221

to 4-222
SetActivePanel, 4-222
SetAxisRange, 4-224 to 4-226
SetAxisScalingMode, 4-223 to 4-224
SetCtrlAttribute, 4-226 to 4-227
SetCtrlBitmap, 4-227 to 4-228
SetCtrlIndex, 4-229
SetCtrlVal, 4-229 to 4-230
SetCursorAttribute, 4-230 to 4-231
SetFontPopupDefaults, 4-231

to 4-233
SetGraphCursor, 4-233
SetGraphCursorIndex, 4-234
SetIdleEventRate, 3-92

to 3-93, 4-235
SetImageBits, 4-236 to 4-238
SetInputMode, 4-239
SetListItemImage, 4-240
SetMenuBarAttribute, 4-241

to 4-242
SetMouseCursor, 4-241 to 4-242

SetPanelAttribute, 4-242
SetPanelMenuBar, 4-243
SetPanelPos, 4-243 to 4-244
SetPlotAttribute, 4-244 to 4-245
SetPrintAttribute, 4-245
SetSleepPolicy, 4-245 to 4-246
SetSystemAttribute, 4-246
SetSystemPopupsAttribute, 4-247
SetTraceAttribute, 4-247 to 4-248
SetWaitCursor, 4-248 to 4-249
SuspendTimerCallbacks, 4-249
UnRegisterWinMsgCallback, 4-229
ValidatePanel, 4-250
WaveformGraphPopup, 4-251
XGraphPopup, 4-252
XYGraphPopup, 4-252 to 4-253
YGraphPopup, 4-253

user interface management functions
FakeKeystroke, 3-94, 4-72
function tree, 4-7
GetSleepPolicy, 4-120
GetUserEvent, 3-92, 4-125
ProcessDrawEvents, 3-93, 4-195
ProcessSystemEvents, 3-93 to 3-94,

4-195 to 4-196
QueueUserEvent, 3-94, 4-197
QuitUserInterface, 3-94, 4-197 to 4-198
RunUserInterface, 3-01, 4-219 to 4-220
SetIdleEventRate, 3-92 to 3-93, 4-235
SetInputMode, 4-239
SetSleepPolicy, 4-245 to 4-246

user interface objects, finding, 2-17 to 2-18
user interface resource (.uir) files, 3-1

V

VAL_AUTO_SCALE, 3-82 to 3-83
validate control mode for commit events

definition, 1-4
requirements, 1-4

ValidatePanel function, 4-250
Vertical Centers option

Alignment command, 2-21
Distribution command, 2-21

Index

LabWindows/CVI User Interface Reference Index-28 © National Instruments Corporation

Vertical Compress option, Distribution
command, 2-22

Vertical Gap option, Distribution
command, 2-21

View button, Edit Menu Bar dialog box, 2-9
View command, Code menu, 2-28 to 2-29
View menu, User Interface Editor

Bring Panel to Front command, 2-19
Find UIR Objects command, 2-17

to 2-18
illustration, 2-17
Next Panel command, 2-19
Preview User Interface Header File

command, 2-19
Previous Panel command, 2-19
Show/Hide Panels command, 2-19

virtual keys
representation in source code, 3-26
values for shortcut keys, 3-26 to 3-27,

4-157 to 4-158

W

WaveformGraphPopup function, 4-251
Window menu, User Interface Editor, 2-31
windows interrupt support functions

function tree, 4-7
GetCVITaskHandle, 4-98
GetCVIWindowHandle, 4-98 to 4-99
RegisterWinMsgCallback, 4-210

to 4-212
UnRegisterWinMsgCallback, 4-229

Windows metafiles, 3-62 to 3-63
Wrap option, Find UIR Objects dialog

box, 2-18

X

XGraphPopup function, 4-252
XYGraphPopup function, 4-252 to 4-253

Y

Y axes
autoscaling Y-axis on strip chart,

example, 5-5
example programs for left and right Y

axes, 5-5
working with two Y axes, 3-81

YGraphPopup function, 4-253

Z

zooming on graphs
definition, 1-19
enabling zooming, 1-19

	LabWindows/CVI User Interface Reference Manual
	Support
	Internet Support
	Bulletin Board Support
	FaxBack Support
	Telephone Support (U.S.)
	International Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	Customer Communication

	Chapter 1 User Interface Concepts
	Introduction to the Graphical User Interface
	User Interface Events
	Controlling Your User Interface Using Callbacks or GetUserEvent
	Source Code Connection
	Control Modes for Generating Commit Events
	Using CodeBuilder to Create Source Code for Your GUI

	Operating a Graphical User Interface
	Using Panels
	Using Menu Bars
	Using Controls
	Using Pop-Up Panels
	Using Fonts

	Chapter 2 User Interface Editor Reference
	User Interface Editor Overview
	Using the User Interface Editor Popup Menus
	Code Builder Overview

	User Interface Editor Menus
	File Menu
	Edit Menu
	Create Menu
	View Menu
	Arrange Menu
	Code Menu
	Run Menu
	Library Menu
	Window Menu
	Options Menu

	Chapter 3 Programming with the User Interface Library
	Developing and Running a Program
	Creating a Graphical User Interface
	If you design your GUI in the User Interface Editor...
	If you design your GUI programmatically...
	Assigning Constant Names in the User Interface Editor

	Controlling a Graphical User Interface
	User Interface Events

	Programming with Panels
	Panel Functions
	Role of Child Panels
	Processing Panel Events
	Panel Attributes

	Programming with Menu Bars
	Menu Bar Functions
	Processing Menu Bar Events
	Menu Bar Attributes

	Programming with Controls
	Control Functions for All Controls
	Control Functions for List Controls (List Boxes and Rings)
	Control Functions for Text Boxes
	Processing Control Events
	Control Attributes

	Programming with Picture Controls
	Simple Picture Control
	Picture Control Attributes

	Programming with Canvas Controls
	Functions for Drawing on Canvas
	Batch Drawing
	Canvas Coordinate System
	Offscreen Bitmap
	Clipping
	Background Color
	Pens
	Pixel Values
	Canvas Attribute Discussion

	Using Rect and Point Structures
	Functions and Macros for Making Rects and Points
	Functions for Modifying Rects and Points
	Functions for Comparing or Obtaining Values from Rects and Points

	Using Bitmap Objects
	Functions for Creating, Extracting, or Discarding Bitmap Objects
	Windows Metafiles
	Functions for Displaying or Copying Bitmap Objects
	Functions for Retrieving Image Data from Bitmap Objects

	Programming with Timer Controls
	Timer Control Functions

	Programming with Graph and Strip Chart Controls
	Functions for Graphs and Strip Charts
	Functions for Graphs Only
	Functions for Strip Charts Only
	Processing Graph and Strip Chart Events
	Graph and Strip Chart Attributes

	Optimizing Graph Controls
	Optimizing Speed
	Optimizing Memory Usage

	Programming with Pop-Up Panels
	Using the System Attributes
	Unsafe Timer Events
	Reporting Load Failures
	Suppressing Event Processing

	Generating Hard Copy Output
	Functions for Hard Copy Output
	Hard Copy Attributes

	Special User Interface Functions
	RunUserInterface
	Precedence of Callback Functions
	Swallowing Events
	GetUserEvent
	InstallMainCallback and SetIdleEventRate
	ProcessDrawEvents
	ProcessSystemEvents
	PostDeferredCall
	QueueUserEvent
	FakeKeystroke
	QuitUserInterface

	Chapter 4 User Interface Library Reference
	User Interface Library Overview
	User Interface Function Panels
	Hard Copy Output
	RGB Color Values
	Fonts
	Shortcut Keys
	Plot Array Data Types
	Include Files
	Reporting Errors

	User Interface Library Function Reference
	AllocBitmapData
	AllocImageBits
	CanvasClear
	CanvasDefaultPen
	CanvasDimRect
	CanvasDrawArc
	CanvasDrawBitmap
	CanvasDrawLine
	CanvasDrawLineTo
	CanvasDrawOval
	CanvasDrawPoint
	CanvasDrawPoly
	CanvasDrawRect
	CanvasDrawRoundedRect
	CanvasDrawText
	CanvasDrawTextAtPoint
	CanvasEndBatchDraw
	CanvasGetClipRect
	CanvasGetPenPosition
	CanvasGetPixel
	CanvasGetPixels
	CanvasInvertRect
	CanvasScroll
	CanvasSetClipRect
	CanvasSetPenPosition
	CanvasStartBatchDraw
	CanvasUpdate
	CheckListItem
	ClearAxisItems
	ClearListCtrl
	ClearStripChart
	ClipboardGetBitmap
	ClipboardGetText
	ClipboardPutBitmap
	ClipboardPutText
	ConfigurePrinter
	ConfirmPopup
	CreateMetaFont
	DefaultCtrl
	DefaultPanel
	DeleteAxisItem
	DeleteGraphPlot
	DeleteImage
	DeleteListItem
	DeleteTextBoxLine
	DirSelectPopup
	DiscardBitmap
	DiscardCtrl
	DiscardMenu
	DiscardMenuBar
	DiscardPanel
	DiscardSubMenu
	DisplayImageFile
	DisplayPCXFile
	DisplayPanel
	DOSColorToRGB
	DOSCompatWindow
	DuplicateCtrl
	DuplicatePanel
	EmptyMenu
	EmptyMenuBar
	FakeKeystroke
	FileSelectPopup
	FontSelectPopup
	GenericMessagePopup
	Get3dBorderColors
	GetActiveCtrl
	GetActiveGraphCursor
	GetActivePanel
	GetAxisItem
	GetAxisItemLabelLength
	GetAxisRange
	GetAxisScalingMode
	GetBitmapData
	GetBitmapFromFile
	GetBitmapInfo
	GetCtrlAttribute
	GetCtrlBitmap
	GetCtrlBoundingRect
	GetCtrlDisplayBitmap
	GetCtrlIndex
	GetCtrlVal
	GetCursorAttribute
	GetCVITaskHandle
	GetCVIWindowHandle
	GetGlobalMouseState
	GetGraphCursor
	GetGraphCursorIndex
	GetImageBits
	GetImageInfo
	GetIndexFromValue
	GetLabelFromIndex
	GetLabelLengthFromIndex
	GetListItemImage
	GetMenuBarAttribute
	GetMouseCursor
	GetNumAxisItems
	GetNumCheckedItems
	GetNumListItems
	GetNumTextBoxLines
	GetPanelAttribute
	GetPanelDisplayBitmap
	GetPanelMenuBar
	GetPlotAttribute
	GetPrintAttribute
	GetRelativeMouseState
	GetScreenSize
	GetSharedMenuBarEventPanel
	GetSleepPolicy
	GetSystemAttribute
	GetSystemPopupsAttribute
	GetTextBoxLine
	GetTextBoxLineLength
	GetTextDisplaySize
	GetTraceAttribute
	GetUILErrorString
	GetUserEvent
	GetValueFromIndex
	GetValueLengthFromIndex
	GetWaitCursorState
	HidePanel
	InsertAxisItem
	InsertListItem
	InsertSeparator
	InsertTextBoxLine
	InstallCtrlCallback
	InstallMainCallback
	InstallMenuCallback
	InstallMenuDimmerCallback
	InstallPanelCallback
	InstallPopup
	IsListItemChecked
	LoadMenuBar
	LoadMenuBarEx
	LoadPanel
	LoadPanelEx
	MakeColor
	MakePoint
	MakeRect
	MessagePopup
	MultiFileSelectPopup
	NewBitmap
	NewCtrl
	NewMenu
	NewMenuItem
	NewPanel
	NewSubMenu
	PlotArc
	PlotBitmap
	PlotIntensity
	PlotLine
	PlotOval
	PlotPoint
	PlotPolygon
	PlotRectangle
	PlotScaledIntensity
	PlotStripChart
	PlotStripChartPoint
	PlotText
	PlotWaveform
	PlotX
	PlotXY
	PlotY
	PointEqual
	PointPinnedToRect
	PointSet
	PostDeferredCall
	PrintCtrl
	PrintPanel
	PrintTextBuffer
	PrintTextFile
	ProcessDrawEvents
	ProcessSystemEvents
	PromptPopup
	QueueUserEvent
	QuitUserInterface
	RecallPanelState
	RectBottom
	RectCenter
	RectContainsPoint
	RectContainsRect
	RectEmpty
	RectEqual
	RectGrow
	RectIntersection
	RectMove
	RectOffset
	RectRight
	RectSameSize
	RectSet
	RectSetBottom
	RectSetCenter
	RectSetFromPoints
	RectSetRight
	RectUnion
	RefreshGraph
	RegisterWinMsgCallback
	RemovePopup
	ReplaceAxisItem
	ReplaceListItem
	ReplaceTextBoxLine
	ResetTextBox
	ResetTimer
	ResumeTimerCallbacks
	RunPopupMenu
	RunUserInterface
	SavePanelState
	SetActiveCtrl
	SetActiveGraphCursor
	SetActivePanel
	SetAxisScalingMode
	SetAxisRange
	SetCtrlAttribute
	SetCtrlBitmap
	SetCtrlIndex
	SetCtrlVal
	SetCursorAttribute
	SetFontPopupDefaults
	SetGraphCursor
	SetGraphCursorIndex
	SetIdleEventRate
	SetImageBits
	SetInputMode
	SetListItemImage
	SetMenuBarAttribute
	SetMouseCursor
	SetPanelAttribute
	SetPanelMenuBar
	SetPanelPos
	SetPlotAttribute
	SetPrintAttribute
	SetSleepPolicy
	SetSystemAttribute
	SetSystemPopupsAttribute
	SetTraceAttribute
	SetWaitCursor
	SuspendTimerCallbacks
	UnRegisterWinMsgCallback
	ValidatePanel
	WaveformGraphPopup
	XGraphPopup
	XYGraphPopup
	YGraphPopup

	Chapter 5 LabWindows/CVI Sample Programs
	Example Program Files
	Using the Sample Programs

	Appendix A Error Conditions
	Appendix B Customer Communication
	Electronic Services
	Bulletin Board Support
	FaxBack Support
	FTP Support
	E-Mail Support (currently U.S. only)

	Fax and Telephone Support
	Technical Support Form
	Hardware and Software Configuration Form
	Documentation Comment Form

	Glossary
	B-E
	F-L
	M-P
	R-S
	T-V

	Index
	A
	B-C
	D-E
	F
	G
	H
	I-L
	M
	N-O
	P
	Q-R
	S
	T
	U
	V
	W-Z

